
The Botnet That Would Not Die
Maximilian Hamminger, inf102409

University of Applied Sciences Wedel, Wedel, Germany
Supervised by Prof. Dr. Gerd Beuster as part of the summer seminar 2019

August 30, 2019

B otnets have been around for long—yet in
most cases, law enforcement agencies or se-
curity researchers managed to take them

down after all. In efforts to increase the resilience
of their bots software, bot herders have developed
new and better techniques to withstand attacks.
When the bot herders realized that centralized bot-
nets are easy targets, they switched to P2P botnets.
As time has passed since the first observed P2P
network, the current state of P2P networks has be-
come highly resistant against most attacks. I pro-
vide an overview of the current situation, different
variants of botnets and their weaknesses. In addi-
tion, I discuss the options we have against other-
wise resilient botnets.

Introduction

This paper originated from my seminar work in the
summer semester 2019 at the University of Applied
Sciences Wedel, which was supervised by Prof. Dr.
Beuster. It is about persistent botnets and the chal-
lenges we face in perspective to the ongoing develop-
ments in this field of cybersecurity.
A botnet is a network of devices, in which the participat-
ing clients (the bots) are infected by malware, allowing
the attacker (the bot herder) to take over control of
the device. Criminals often use botnets for various ille-
gal activities, such as banking fraud, denial of service
attacks or sending spam. Although most bot herders
have criminal intentions, there are some speculations
about state actors involved in certain botnets. As time
progresses, botnets get more and more advanced and
more resilient to the established takedown methods,
making it harder for law enforcers to take them down.
I will start with a brief overview of well-known botnets
and explain the difference between centralized and de-
centralized, peer-to-peer based botnets. Furthermore,
I will show some methods which can be used for a
takedown when the usual methods are not available

and discuss their associated legal and ethical problems.
This paper should offer a comprehensive overview of
the challenges we face and how we could overcome
these.

Contents

1 Motivation 2
1.1 Example: GameOver ZeuS 2
1.2 Example: Mirai 2
1.3 Problem description 2

2 Centralized Botnets 3
2.1 Architectural advantages and disadvan-

tages 3
2.2 Takedown Methods 4
2.3 Hiding the Command & Control Server 5

3 P2P Botnets 7
3.1 Architectural advantages and disadvan-

tages 8
3.2 Resilience of P2P Networks 8

3.2.1 Intelligence gathering resilience 8
3.2.2 Disruption resilience 9

4 Options against P2P Botnets 10
4.1 Reducing effectivity of P2P Networks . 10
4.2 Mitigation 11
4.3 Exploitation 12
4.4 Legal and ethical problems 12

5 Closing remarks 13

The Botnet That Would Not Die

Figure 1: Lifetime of various botnets. Taken from the Rossow et al. [18].

1 Motivation

Before explaining the details of various kinds of
botnets, I would like to present to you a famous botnet
called GameOver ZeuS, which first attracted a lot of
attention in September 2011 and stayed active until
2014, when a collaboration between the FBI, Europol,
the British National Crime Agency and a few more
private companies took down the botnet[15]. ZeuS
has caused losses that exceed $100 million[11].

Another example is Mirai: It was first seen in
August 2016 by MalwareTech and caused massive
DDoS attacks, which were reported as high as 1
Tbit/s[10].

1.1 Example: GameOver ZeuS

GameOver ZeuS is a botnet, which is specialized in
bank fraud. It was used to manipulate input fields
in browsers to steal the banking data and generated
huge losses. Apart from this, GameOver ZeuS was also
used for the distribution of ransomware. In comparison
to its predecessor, the ZeuS trojan, GameOver ZeuS
depended on an encrypted peer-to-peer based commu-
nication for command and control and a domain gener-
ation algorithm(DGA for short) for a fallback channel.
This made it quite hard for law enforcement to take
down the botnet.

1.2 Example: Mirai

Mirai however, is a different botnet than GameOver
ZeuS: It is a centralized botnet, meaning it is relying on
the direct communication with its Command & Control
server. It scanned the internet for insecure Internet
of Things devices, like security cameras and routers,
which used the default login data. When successful,
Mirai would scan the device for competing malware
and remove it when necessary. The next step is to
contact the Command & Control server and wait for
any targets. The denial of service attacks from Mirai
have been some of the largest and most disruptive
ones[1].

Figure 2: Telnet scans from Mirai which were logged at cloud-
flares honeypots. Taken from Bursztein [4].

Another factor that made Mirai so successful was its
quick growth, as can be seen in Figure 2. Mirai doubled
its numbers in the early hours every 76 minutes[4].

1.3 Problem description

The problem that arises is the following: Botnets are
becoming more and more harder to take down, as it
can be seen with the ZeuS botnet, which needed a large
joint venture operation. It needed the involvement of
the FBI, Europol, and the British National Crime Agency,
experts from the VU University Amsterdam, Saarland
University; security firms, which were CrowdStrike,
Dell SecureWorks, Symantec, TrendMicro and McAfee
to be able to be taken down after 3 years of continues
operation[15]. The Sality botnet, however, was first
seen in 2003 and due to still ongoing development, it
is still online and operational. This is mainly due to its
resilient design, which renders the traditional methods
like sinkholing or shutting off a few servers useless.
“Hacking back” is another option to take down a botnet,
yet it is often not considered an option as it requires
executing code on another person’s device which is in
many countries a criminal offense. In addition, it also
raises a lot of ethical questions, which are discussed in
subsection 4.4.

Page 2 of 15

The Botnet That Would Not Die

2 Centralized Botnets

Most of the times in the past the creators of botnets
went for a centralized network topology. In a central-
ized architecture, the bots try to contact a centralized
command and control structure, which most of the
times consists of one or a few command and control
servers. A simplified model is shown in Figure 3:

Bot

Bot

Bot

Bot

Bot

Bot

C&C Server

Figure 3: Basic overview over the network topology of a cen-
tralized botnet.

Once the bots have successfully made contact with
the command & control server, the bots then await
their actions. In many cases, the command & control
server is reachable under an IP address, which is either
hardcoded into the bots software or obtained by a DNS
lookup. However, there are a few ways to obfuscate
the location of the command & control server, as I
will discuss in subsection 2.3. Centralized botnets can
also be separated in two categories: Pull-based(for
example, with HTTP) and push-based(as with IRC)
communication. With pull-based communication, the
bots check in a regular interval with the command &
control server for new commands, while with the push-
based approach the bots remain in constant contact
with the command & control server and listen for new
commands.

2.1 Architectural advantages and disad-
vantages

From the attacker’s point of view, the centralized archi-
tecture comes with a few advantages. To get a good
understanding, why attackers still use this architecture

instead of a more resilient one, I will list a few of the
advantages here.

Easy: The first advantage is that a centralized topology
is relatively easy to implement and does not take
that much time compared to a decentralized one.
The attacker just needs his bots to connect to a
server, which is often hosted on either hacked
servers or from so-called “bullet-proof hosters”,
which promise to offer to host without having
to worry about law enforcement, simply by not
complying to court orders or moving the server to
a different company if the external pressure gets
too high. The actual programming effort is low.

Situation awareness: In addition, the attacker also
knows fairly well about the current situation, as
in how many bots are currently online, what their
total network capability for denial of service at-
tacks would be, who is behaving “weird”, i.e. who
might be doing research on his botnet. In many
times, the bot herder will issue a denial of service
attack against any non-complaint bots, meaning
that researchers will have a slightly harder time
to study the bot. There are a few differences here
between pull-based and push-based ones: While
push-based is quite accurate in its numbers since
there is a constant connection between the com-
mand & control server, pull-based communication
can tend to be a bit off.

Efficiency: Furthermore, depending on the implemen-
tation details, a centralized botnet can be quite ef-
ficient. Take an IRC implementation for example,
which is by design push based. A lot of bots can
connect to an attacker-controlled IRC server and
join a specific channel. Based on these channels,
the bot herder knows how many are online and
can by, for instance, setting the topic in the chan-
nel, send commands to all bots at the same time.
Additionally, the bot herder can give commands to
single bots at the time by the use of private mes-
sages. Another example would be a botnet which
is HTTP based and therefore pull-based. Modern
web servers can handle many thousand requests a
second without problems[17], allowing for quick
spreading of the botnet and low intervals between
checks for new commands.

Nevertheless, this architecture design comes with its
own flaws and weaknesses. I will give a small summary
of them here:

Single point of failure: By the nature of this design,
it has a single point of failure: the command &
control infrastructure. Due to this, the bot herder
needs to focus his main attention on methods to
hide his Command & Control infrastructure from
the eyes of law enforcement agencies and other
private researchers, as losing control over this part
of the botnet means losing control over the whole
botnet. Applicable methods for hiding this impor-

Page 3 of 15

The Botnet That Would Not Die

tant part of the network are discussed in subsec-
tion 2.3.

Easy to track: Tracking a botnet means to gather in-
telligence about the metadata of the network. Of-
ten researchers want to know how many bots are
active in the botnet, what the main purpose is and
from where the infected devices originate. How
this is done is often specific to the implementation
details, e.g. when dealing with IRC based net-
works, the researchers can join the IRC server with
the information contained in the bots software.
Depending on the configuration of the server, the
researchers can then see how many bots are on-
line and what the commands from the bot herder
are. In case this does not lead to any insights, the
botnet can be tracked by another method at ISP
level or by DNS providers. To determine the size
of the botnet, the ISP can count the number of
connections to the specific IP of the command &
control server. This can too be achieved over DNS,
by counting the lookups for the corresponding
DNS-Record, but it requires that the botnet uses
DNS. Both methods however only deliver a small,
regional insight into the actual network and can
be overestimated due to changing IP addresses of
the users.

Blocked easily: Another disadvantage from this type
of design is that law enforcement agencies can use
the single point of failure against the bot herder:
By using the methods explained in subsection 2.2,
the communication between the botnet and the
command & control infrastructure can be inter-
rupted, thus leaving the bot herder without con-
trol and therefore without the ability to make
money by blackmailing or different kinds of illegal
activities. Methods which can be used to block the
control are among other things the following:

• Sinkholing
• Hosting provider de-peered
• Hosting provider shuts off C&C server
• Exploitation of misconfigurations/bugs in the

C&C server

The details for these methods are explained in the
following subsection, except for the Exploitation, as
this is considered as an offensive option. However, we
will discuss it eventually in subsection 4.3.

2.2 Takedown Methods

To go into detail with each method for taking a server
down, I have provided a list which explains the tradi-
tional methods of taking down a command & control
server. Moreover, I discuss what the problems with
their application are.

Sinkholing: A DNS sinkhole is a DNS server, which is
configured as such that each DNS query it receives,
is checked against a blacklist. If the DNS query is

on the blacklist, the DNS server then returns a fake
address, redirecting the bot to a fake command
& control server (the sinkhole) in order to shut
off communication with the bot herder. Sinkholes
are also sometimes used to track and enumerate
a botnet by counting the amount and type of re-
quests. By design, a DNS server first checks in its
cache if the request has already been requested,
and if not, it will send the request to a higher-level
DNS server. Consequently, the higher up the DNS
server is in the DNS hierarchy, the more effective
it is.
Another way to sinkhole a botnet is on the host-
level. By editing the host file and adding the loca-
tions of the command & control servers, one can
redirect traffic to another address without having
to change the DNS server.

Bot DNS Server

Sinkhole
172.26.0.143

C&C Server
78.47.110.49

1. Where can I find
C&C Server?

2. I found C&C Server under
the IP 172.26.0.143

3. Bot connects to sinkhole
instead of actual C&C Server

Figure 4: Sinkhole concept

Yet it should be taken into account, that operating
a sinkhole might mean that one will have to work
with sensitive data, as the sinkhole will receive the
data from the bots, which can feature functionality
for identity theft or financial data, such as credit
cards.

Physically shutting it off: This method makes the im-
pression to be very straight forward. Shutting off
the server or de-peering the hoster in case he does
not cooperate sounds simple, requires however
a few steps which are not so easy to accomplish.
First of all, the location of the command & con-
trol server needs to be known. We need to know

Page 4 of 15

The Botnet That Would Not Die

the location of the server for two reasons: first, to
shut it down and second, so we can get in touch
with the local law enforcement. However, often
a botnets command & control infrastructure is
spread through multiple countries. Furthermore,
taking a botnet offline by shutting off the com-
mand & control servers requires that these servers
are shut off at the same time, otherwise, the bot
herder can simply install new ones somewhere
else. Since there are multiple countries involved,
it also means there is a different jurisdiction in
each country. This can be problematic, when one
of the countries in which the server is hosted, de-
cides to not cooperate.
Even when all countries cooperate, this method
can still fail: Often times, “bullet-proof” hosters
will try to evade law enforcement actions, by
quickly moving the customer to a new hoster or
simply refusing to work with law enforcement. In
this situation, only a de-peering would work, as it
happened in late 2008 with McColo. However, this
does mean that not only law enforcement needs
to cooperate, but also private firms who peered
with the hoster. All in all, this is not an easy task.

Cleanup of bots: Besides the other methods, a botnet
can also be taken offline by removing the bots
from the network, for example by removing the
infections of the infected devices. On the other
hand, this is easier said than done: the bots soft-
ware has often certain functionality embedded,
which disables installed antivirus software and is
deeply integrated into the system to make removal
hard. In addition to only removing the unwanted
malware, the user has to update his device so that
it will not be reinfected again. In case of the use
of zero-days or usage of old software which is end
of life and does not receive any updates anymore,
like for example Windows XP, this is somewhat
problematic.

It should be noted, that the first two methods do not
completely solve the problem. In many cases, the bots
are still active, however, fail to establish a connection to
the command & control server, as it is no longer reach-
able. This leads to the problem that the devices are still
vulnerable and someone else might make use of this,
by using backdoors or other mechanisms introduced
with the initial infection.

2.3 Hiding the Command & Control
Server

To evade loss of control over the bots and therefore
over the botnet, bot herders have developed over time
a few different ways to hide their command & control
server. I provide an overview of the best-known ones
here.

Domain Generation Algorithms: Domain Genera-
tion Algorithms (in short: DGA) can be observed
in various botnets. The DGAs can even differ
in botnets themselves like it has been observed
in GameOver ZeuS. Bitdefender reported that
it has seen two variants in the wild: one of
them generated 1000 domains a day, while
another generated 10000 domains a day[5].
These generated domains usually are used for
“rendezvous points”, meaning that for a certain
time period a bot will be able to connect to
a C&C server under that address. Simply the
huge amount of generated domains and also,
when done correctly, the unpredictability of
the algorithm’s output makes it hard for law
enforcement agencies to effectively shut down the
connection between the bots and the C&C server.
To make it harder for others to predict domains
which the algorithm generates, DGAs often
include external events, like trending topics on
Twitter.
As an example, the bot herder would generate
domain names using the same DGA as the one
included in the bots and register only a few of
them. The bots then would also generate their
own list of domains, and try to contact a small
portion of them in the effort of establishing
communication with the C&C server.
This technique gained its popularity by the
Conficker worm, which first started with only
250 domain names a day, but was found to have
increased the amount of generated domains to
50000 domains a day in later versions. Even
despite the fact that it generates 50000 domains,
it only tries to contact only 1 % of them. If law
enforcement would make an effort to sinkhole
these domains—meaning to try to register each
of these before the bot herder could, to redirect
them to sinkhole—they would have to register
50000 domains per day.
There have been efforts to predict the domains
generated by DGAs using machine learning,
however, these can often be targets of adver-
sarial techniques, which trick them into wrong
results[19].

An example for a domain generation algo-
rithm can be seen here, which is written in
python:

TLDS = [’ . com ’ ,
’ . b i z ’ ,
’ . us ’ ,
’ . net ’ ,
’ . org ’ ,
’ . ws ’ ,
’ . i n f o ’]

DEFAULTTLD = " . in "
LETTERS = " asnhreqwpm "

Page 5 of 15

The Botnet That Would Not Die

def dga (date , magic , number) :
year = date . year
month = date . month
day = date . day
seed = year + month + day + magic
r = Rand(seed)
fo r s p e c i f i e d number o f domains
for i in range (1 , number) :

r e s e t s e ed e v e r y 51 t imes
i f i == 51:

r = Rand(magic)
randomNumber = r . rand ()
array which i s l a t e r
t r a n s l a t e d from i nd e c e s
to l e t t e r s
ra = []
f i l l array with random
numbers from 0 − 9
for i in range (10) :

append l a s t d i g i t
from random number
ra . append(randomNumber % 10)
f l o o r d i v i d e and a s s i gn
randomNumber //= 10

domain = " "
conv e r t array o f i n d e c e s
to a s t r i n g , u s ing i n d e c e s
to as semble from s p e c i f i e d
l e t t e r s array
for x in ra :

domain += LETTERS[x]
s e t t l d . I f f i r s t index
in index array i s h i ghe r than
the l eng th o f the t l d array
then take the f i r s t one
e l s e take the d e f a u l t
i f ra [0] < len (TLDS) :

t l d = TLDS[ra [0]]
else :

t l d = DEFAULTTLD
append t l d to domain
domain += t l d
re tu rn the domain
without jumping out
o f the f un c t i o n
y i e l d domain

This DGA was actually used in MyDoom, a
computer-worm in 2004, so credits go to who-
ever the respective author is. It should be noted,
that the random generator got modified as to such
that it always returns a number which is at least 9
digits long. The full code can be found in a GitHub
repo[2]. I have added comments and simplified it
a bit to explain what it does for non-python users.

Flux: Many botnets have used fast flux as a technique
to increase their resilience against takedowns by
hiding the exact location of their command & con-
trol server. For example, the Storm and Rustock
botnets used fast flux. The general idea is mostly
the same as with content delivery networks[13].

C&C Server

Bot A

Bot C

Bot E Bot F

Bot B

Bot D

Bot G

Attacker controlled
DNS Server

1. Where can I
find C&C Server?

2. I found C&C Server:
addresses of A, D

3. Using another
bot as proxy

Figure 5: Fast Flux Network

When the bot queries his DNS server for the do-
main under which he tries to contact the command
& control server, the request is first sent to the near-
est DNS server and is then forwarded to the bot
herders DNS server. The bot herders DNS server
will then answer with usually a large number of
IP addresses, which all have a very short time to
live, under which the bot can reach the command
& control server. These IPs commonly are associ-
ated with other bots in the network, which act as
proxies to the actual command & control server.
The proxies will then forward all traffic to the com-
mand & control server. Due to the very short time
to live entries in the response from the DNS server,
this will cause the results to be different each time
the same domain is queried.

Tor: Tor, as an anonymous communication network,
offers a service called “Hidden Service”. It was
added in 2004 and allows users to run a server
anonymously over the Tor network. Tor itself
works by providing another network, which uses
“Onion routing”. Onion Routing is done by en-
crypting the packet multiple times, however, with
each encryption step, a destination IP of a ran-
domly selected tor relay is added. By design, the
packets get routed multiple times over these Tor
relays, which can only decrypt the first layer to
find out what the next destination for the packet
is. When the packet arrives at its final relay, it will
get decrypted by the relay, which then sends the
original data to its actual destination. The impor-
tant aspect in this is, that the last relay does not
know who the original sender was, thus allowing
for anonymity in the network—in this case, the
hidden command & control server which is imple-
mented as a hidden service.
Using Tor for communication with the command
& control server also offers another advantage for
the bot herder: he does not have to worry about

Page 6 of 15

The Botnet That Would Not Die

NAT and Firewalls, as the communication goes
directly through Tor. Furthermore, the bot herder
can easily generate new .onion domains by gener-
ating new public keys[3].
Due to the implementation of the Tor network,
locating the command & control server is often
only possible by finding information leaks, such
as a web server which reports its actual IP or ex-
ploiting the service by finding misconfigurations
or bugs.

3 P2P Botnets

Peer-to-Peer Botnets, or decentralized Botnets, are
botnets who do not need a central command &
control server. Instead, the bots enable communication
within the botnet by peering with other bots[6]. The
corresponding network topology is called peer-to-peer
(in short P2P), hence the name. Each bot knows only
about a small subset of the botnet, which is known as
peers for the bot. These peers are typically saved in a
peerlist, which saves the addresses of the other bots.
The bot can then talk to its peers to propagate new
updates or commands, who then themselves talk to
their peers, thus allowing for the spread of information
and commands through the whole botnet.
In case of the first, the bots exchange when peering
their version number, and if one revision is lower than
the other, the older bot is updated to the newer version.
Inserting new versions and/or commands can be done
from any arbitrary point imaginable, making it hard to
localize the origin. This process is slower than when
realized in a centralized architecture, however, it
comes with the great advantage of staying anonymous
as a bot herder. In many cases, the bot herder uses
code signing to prevent others from taking the botnet
over. Famous examples of these decentralized botnets
are the Storm worm, Nugache, and Conficker.
Furthermore, P2P networks can be split into two
categories: Unstructured and structured. Unstructured
networks do not impose any particular structure for
the network topology by design, but rather form
by random connecting to other bots. Since there is
no structure, communication between bots works
by gossiping. Gossiping means that in order to find
something, the bot has to inform all other bots,
causing the network to be flooded with the search
query. This usually means higher utilization of system
resources, such as CPU and bandwidth. In addition,
because the role of all peers is the same, the network
is highly robust against high churn—that is, when
a large number of bots enter and leave the network
frequently. Most current botnets use this approach,
such as Sality and Nugache.

Structured P2P networks, however, create in addi-
tion an overlay for efficient routing and searching in the
network. Distributed hash tables are often the variant

Bot

Bot

Bot

Bot

Bot

Bot

Figure 6: Simplified version of an unstructured P2P network,
where each bot has 3 other peers with whom he can
talk.

of choice for implementing efficient search methods,
in which a variant of hashing is used to assign own-
ership of a certain file to a particular bot. A bot who
would like to retrieve the file would then go on and
look up in the distributed hash table the location of the
file, and then contact the corresponding bot. The use
of distributed hash tables, however, makes them less
robust in situations where there is a high churn. One
botnet which used a structured protocol is Storm.

Bot A Bot B Bot C Bot D

01 11

0 1

00 10

Figure 7: Structure of a structured P2P network, using dis-
tributed hash tables to identify and locate nodes.

Page 7 of 15

The Botnet That Would Not Die

3.1 Architectural advantages and disad-
vantages

While P2P networks are designed to be highly robust
against takedown attempts, they too suffer from some
design flaws. Again, I will list and discuss the most
prominent advantages and disadvantages.

Resilient by design: Many P2P botnets incorporate
certain features, that make them highly resilient.
However, some are also a result of the P2P ar-
chitecture. The probably biggest advantages of
P2P networks is that they do not feature a sin-
gle point of failure, as with centralized botnets.
Where in centralized botnets a central server sends
out the commands and is critical for the botnet,
P2P botnets use gossiping or an overlay for com-
munication, as explained in the previous section.
Furthermore modern P2P are harder to track, as
the bots often do not use explicit identifiers and in
addition, do not exchange peers often. Traditional
methods like message spoofing also seem to lose
their effectiveness: many networks today use en-
cryption, preventing the commands from getting
spoofed. I will talk more about these features in
subsection 3.2.

Slow: One big disadvantage from P2P networks is,
that they are comparably slow and inefficient in
their communication and execution of commands.
In unstructured networks, themessage floods each
time the network, which reduces efficiency. While
structured networks do not suffer from this prob-
lem, as the message exchange can be realized effi-
cient by targeting each bot just once, they too can
not reach the quick reaction times a centralized,
push-based network can reach. When they are by
design pull-based, using the distributed hash table
as a place to propagate new commands, they risk
introducing a new single point of failure. Due to
this, they need to include the same information
at multiple locations. In addition, pull-based also
means that the reaction time is still the maximum
waiting time for a new pull command.

Harder to implement: While centralized botnets
are relatively easy to get up and running, P2P
networks need more knowledge about their
individual advantages and disadvantages. To
get a truly resilient, a lot has to be into con-
sideration as the bot herder: How should I
protect against message spoofing? How can I
stop someone from partitioning my network?
Do I structure my network, and if so, make
myself vulnerable against index poisoning
attacks? How do I deal with new bots, how can
I make sure that they are legitimate and not a
fake version from researchers or law enforcement?

In many cases, the bot herders design a
custom protocol for these reasons, as for example

the Storm botnet has shown that using already
existing, filesharing P2P protocols are flawed
when used for botnets.

3.2 Resilience of P2P Networks

I am basing this subsection mainly on the paper
“P2PWNED — Modeling and Evaluating the Resilience
of Peer-to-Peer Botnets” by Rossow et al. [18], who de-
veloped a graph-theoretical model to analyze current
and future botnets in regard to resilience. The graph
model itself is not part of this subsection, however, I
will talk about the aspects of resilience featured in that
paper.
First of all, Rossow et al. defined two aspects when it
comes to resilience:

Intelligence gathering resilience: The more the bot
can deter malware analysts from enumerating the
botnet, the higher its resilience against gathering
intelligence is. This is important, as we need to
know the topology of the network and who is in-
fected to figure out what attacks on P2P networks,
and also what techniques for the mitigation, are
even feasible.

Disruption resilience: Secondly, another important
aspect is how capable the network is against
attacks from researchers and law enforcement
agencies. Examples of disruption techniques in-
clude Sinkholing, which is explained under sub-
section 2.2 or partitioning.

Another important point is, that these aspects do not
apply to just one, very specific botnet, but instead to
the general concept of P2P networks. This, however,
does not mean that all techniques featured in this sec-
tion will always work—as a matter of fact, most highly
advanced botnets feature certain procedures to prevent
this—but it should give a good starting point for start-
ing research about a specific botnet, which then can be
defeated using implementation-specific weak-points.

3.2.1 Intelligence gathering resilience

When it comes to gathering intelligence over a certain
botnet, we can decide whether we want to do it actively
(by crawling) or passively (by inserting probes). On a
side note: Probes are also often called sensors.

Crawling: Crawling is a known technique. To enumer-
ate the botnet, simply visit every botnet and incre-
ment a counter by one. To further gain knowledge
about the botnet, any other information which is
provided by the bot should also be collected ad-
ditionally. For example: Revision numbers, the
version of the operating system, the current local
time. However, this is specific to every communi-
cation protocol—not every protocol includes this
information. Furthermore, many bot herders have
made it hard to “simply” enumerate the bots, for

Page 8 of 15

The Botnet That Would Not Die

instance, many bots do not use explicit identi-
fiers, making it difficult to determine whether or
not a bot has already been counted. In addition,
there are many bots hiding behind firewalls or
NAT, which means that they will not be reachable
from the internet. Moreover, the network changes
while crawling due to churn, limiting crawling to
a certain time frame[22]. Since all of this also
depends on the protocol, an exact amount can not
be estimated. As a famous example, the Storm
botnet has been estimated to contain more than
a million bots, however, when it was taken down,
the researchers only counted about 280k bots[9].

def crawl () :
v i s i t e dP e e r s = []
i n i t i a l s e ed pee r l i s t
obta ined by random scanning
or de compi l ing the bot
pee r L i s t = [A , B , C]
while True :

for bot in pee r L i s t :
only e x p l o r e not
ye t v i s i t e d bo t s
i f bot not in v i s i t e dP e e r s :

cache = reques tPeer s (bot)
adds the r e qu e s t e d
pe e r s to the
p e e r L i s t which has
ye t to be v i s i t e d
pee r L i s t . extend (cache)
removes the
bot i t s e l f
the p e e r l i s t ,
avo id ing c y c l e s
pee r L i s t . remove (bot)
f i n a l l y add to
v i s i t e d p e e r s
v i s i t e dP e e r s . append(bot)

Figure 8: A basic crawling algorithm in pseudo-python. It
is an adapted version from Rossow et al. [18] P2P
Botnet Graph Search algorithm. The size can be
estimated using the size of the visited peers list.

Probes: In contrast, when it is more important to
gain knowledge about the peers instead of the
topology of the network, another method can be
used: Probes. This idea originating from Kang
and Zhang [14] and was further generalized by
Rossow et al. [18]. The basic idea is simple: Insert
into the network special bots—probes—, which
participate in the network. Inserting the probe
into the network can be achieved by injecting the
probe’s address into the peerlist of other bots. As
the other bots frequently need to check if the en-
try in their peer list is still online and responding

as part of their peerlist verification, they have to
communicate with the probe. This then can be
used to enumerate the bots. Another advantage
is that non-reachable bots can too be enumerated,
as NATs and firewalls do not impose a problem.
Nevertheless is the coverage of the probe highly
depended on the amount of its address in other
bots peerlist. To boost the coverage, the network
can be crawled, inserting the probe into every
crawled bot’s peerlist. In some implementations
of botnets, the probe would then also spread into
not crawled bots by the exchange of peerlists be-
tween the participants in the network. However,
this is a greatly specific to the implementation of
the P2P botnet—In some, the probe has to contin-
uously advertise itself in order to not prevent the
removal of its address from the peerlist, while it
other it does not.

Botnet IDs Invalid peers # Preference Timeframe

Kelihos X 7 250 Recent 10 minutes
Nugache 7 7 100 Recent Random
Sality 7 7 1 Random 40 minutes
Storm X X 10 Distance 10 minutes
ZeuS X X 10 Distance 30 minutes

Table 1: Overview over the most prominent P2P networks and
their characteristics. IDs is checked when the botnet
uses unique IDs. Invalid peers defines whether or not it
is possible to include not routable peers in the peerlist.
stands for the maximum amount of peers exchanged
and Preference lists the criteria which decides which
peer is choosen. Timeframe is the interval between
peer exchanges. Credits go to Rossow et al. [18].

Modern botnet creators, however, spend a consider-
able amount of time in order to make sure that they
are not vulnerable to these techniques. In many cases,
the exchange of peers is not frequent. In addition, the
number of peers exchanged is often very low. Sality for
example only exchanges one peer at a time every 40
minutes.

3.2.2 Disruption resilience

In many cases tracking the development and trying to
gain intelligence about the topology of the network and
its bots, is only the first step. Knowing how many bots
are currently active and what their metadata is, does
not yet take the botnet down. A solution to bringing a
network down on the infrastructure layer could be to
partition or sinkhole it. On the communication layer,
it is sometimes possible to use command poisoning,
which is explained in detail in subsection 4.2.

Partitioning: Prohibiting the spread of commands and
other information across the network results in
a partitioned network, where one subset of the
network is not able to communicate with the other.
It is often the case after a successful analysis of the

Page 9 of 15

The Botnet That Would Not Die

botnet, in which certain nodes—often so-called
“hot spots”—can be identified as the sources of
new commands. This can be done by inserting un-
reachable or non-routable entries into the peerlist
of this node, thus eliminating the possibility of
that bot to send further commands. Usually, this
is known as destroying the (bots) peerlist. Which
bot would need it’s peerlist destroyed depends on
the structure of the botnet: In pull-based networks,
one would eliminate the peerlist of the bots which
pull from the central bot. In push-based networks,
the one who is pushing the information would be
the target.
This method nonetheless requires extensive knowl-
edge about the topology of the network. For ex-
ample, the hot spots need to be known and also
who is peering with them.

Sinkhole: The general idea of a sinkhole is already
explained in subsection 2.2. Thus I am concentrat-
ing in this part on sinkholing P2P networks, which
basically transforms these into a central network.
In this attack, all peers of each participating bot
in the network are replaced by the address of the
specific sinkhole, so that every bot knows at least
one sinkhole but no other routable bot. When
the sinkhole actively searches the botnet for other
peers and their connection, it can furthermore an-
nounce itself to these bots.
In most cases, the sinkhole needs to exchange P2P
messages (and due to this, implement at least a
few of the protocol’s mechanisms) to retain its
popularity in the network, as becoming removed
from the peerlist would render the sinkhole use-
less. In addition, inserting the sinkhole in all bots
while also removing any routable peers is some-
thing which needs a lot of planning in advance
and is not easily feasible.

Both attacks, sinkholing and partitioning, require
that we can poison other peers peer list. Yet this is often
not possible in the wild: For example, Sality in addition
to one exchanging one peer every 40 minutes, also only
replaces peers with a low reputation. Moreover, it picks
these peers at random, unlike Nugache, which picks
peers which are recent or Storm and ZeuS, which pick
peers that are close by. Kelihos features a fast-flux
channel for recovery, in cases where the P2P network
is getting compromised. ZeuS, in addition, has a DGA-
based recovery channel, which also allows for removing
suspicious bots from the peerlist.

4 Options against P2P Botnets

Every P2P botnet has to manage two important
aspects: Keeping connectivity up and the exchange
of information by routing. When a new bot joins the
network, it needs a certain way to integrate itself in
it. Typically this is achieved by exchanging peerlists

and very often, this is the attack vector as it was
with the attacks featured in subsubsection 3.2.2 and
subsection 4.2.

Nevertheless, there is another option which can be
used against P2P-, but also against centralized-botnets,
where it is not necessary to exploit the peerlist
exchange procedure. It is often called poisoned fruit.

Leder, Werner, and Martini [16] categorized the dif-
ferent attack strategies in three different categories:
Manipulation, Mitigation and Exploitation. I will ex-
plain what defines the categories in each corresponding
section.

4.1 Reducing effectivity of P2P Net-
works

Instead of taking the botnet down, the general idea
is to reduce the effectiveness of the network for
the bot herder by such an amount, that it becomes
uninteresting to further maintain it. Since this requires
knowledge and the use of the communication protocol
of the specific botnet, this is can be categorized as
manipulation.

Poisoned fruit: The poisoned fruit idea explores this
concept: It bases on injecting wrong, sometimes
even traceable datasets into the network.
An example: A botnet is specialized in stealing
credit cards. After the device has been infected,
the bot will constantly monitor the machine for
new credit card data, and when it registers new
entries, it will report the credit card data to the
network, from which the bot herder then collects
the entries and sells them on the black market.
Applying the concept to this network would
mean that we would start by inserting a few bots
which can be controlled into the network. After
the bots have been deployed, we would then
go on and start sending out fake credit cards,
which have been registered(as in, saved for later
identification).
This reduces the effectiveness of the network
proportional to the percentage of inserted fake
data to the overall amount of data harvested in a
given timeframe, as the fake credits card do not
work and thus cannot be sold. It also damages
the reputation from the bot herder on the black
market, as an increased amount of not working
credit card numbers will be provided to buyers.
This will force the bot herder to either stop selling
credit cards or having to test each harvested
credit card number, which will increase the time
and effort needed for an effective botnet used for
fraud.
In this example lies another advantage: As the
inserted credit cards have been registered before

Page 10 of 15

The Botnet That Would Not Die

it was inserted into the network, they can later
be identified. As a result, the botnet can later in
ongoing law enforcement efforts linked to certain
sellers. A similar approach as with registered
banknotes in the case of a abduction with a
ransom demand.

Index Poisoning Attack: In an index poisoning at-
tack a malicious bot spams the distributed hash
table with false locations[24], often by adding en-
tries which do not hold the information, therefore
forcing the bot to try another location for fetching
the file. The larger the amount of inserted false
index information, the less effective is fetching the
file.
As shown in Figure 9, when a bot wants to pub-
lish a piece of information, such as commands or
an update file, it will add an entry to the DHT,
allowing others to query for it. In the next step,
the attacker then adds entries for that informa-
tion to the DHT, however with locations which are
not reachable. When a bot then wants to obtain
the information, it queries the DHT, which will re-
spond with the location of the file. As the attacker
has already inserted bogus information, chances
are that the bot will receive a not reachable loca-
tion or a location, which simply does not possess
that information. This results in the querying bot
wasting a great amount of time contacting peers
which either do not respond or do not possess the
information. Research from Yoshida et al. [23]
has shown that on certain P2P networks, such
an attack can reduce the ability to successfully
download a piece of information to 0.004%.

On the other hand, the requirement for this attack is
that the network is structured and the DHT does not
validate the locations of newly advertised files.

4.2 Mitigation

The difference between Manipulation and Mitigation
is subtle. Both are focused on slowing down a botnet,
however, Mitigation does not make use of the com-
munication protocol. Examples can be methods like a
temporary Denial of Service attack against a command
and control server, or a Sybil attack.

Sybil: The Sybil attack is a technique in which an at-
tacker joins the network multiple times, however,
pretends each time to be someone else. Further-
more, the attacker usually injects them as dis-
tributed as possible[6] to have the most impact.
In addition, the injected Sybil nodes have to stay
active and continue to advertise themselves to the
other participants. The attacker can then, for ex-
ample, change the routing between the bots(like
always route traffic over other Sybil nodes) and

Bot F

Bot E (does not posses file XYZ)

Bot D

Bot CBot B

Bot A (has file XYZ)

Attacker

DHT

1. Publish file XYZ

Publish file XYZ with

Bot E as location

3. Get file XYZ

4. Returns location

for file

Figure 9: Basic principle of an index poisoning attack. The
attacker inserts another location into the index so
that any bot who queries it will not be able to locate
the requested file and instead has to lookup another
location. The DHT is distributed over all bots in the
network and not a central structure. The 5. step is
that Bot D tries to download from one of the two
provided Bots. In the case of Bot E, it will fail to fetch
the file, while succeed with Bot A, thereby reducing
the effectiveness. Step 5 has been excluded from the
graphic for better readability.

thus slow down the network. A Sybil attack can
also be used to spy on the network, as Holz et al.
[12] have shown. Davis et al. [7] did evaluate
the use of a Sybil attack against the Storm botnet,
which showed that it needs substantial and sus-
tained attacks in order to bring down a botnet.
Sybil attacks can be prevented by the creator of
the botnet by implementing the proof of work con-
cept, as in the bitcoin P2P network. For a better
understanding of the Sybil method, I have pro-
vided Figure 10, which shows a simplified P2P
network in which an attacker has injected a large
number of Sybil nodes.

Eclipse: An Eclipse attack is the strategy to fully in-
vade one specific bot’s peerlist, so that the bot
cannot communicate with the rest of the network.
This will render the bot in the state it was at the
moment of the attack, as it no longer receives any
updates or new commands. An application could
be, that after a successful analysis of the botnet,
certain hotspots would get fully eclipsed from the
network, therefore leaving the bot herder without
control until he uses a new node to insert com-
mands into the botnet. It should be noted, that
this method requires not only a lot of knowledge
about the topology of the network, but also of the

Page 11 of 15

The Botnet That Would Not Die

Bot F

Bot E

Bot C

Bot B

Bot D

Bot A

Sybil node
Sybil node

Sybil node

Sybil node

Figure 10: A network invaded by sybil nodes, allowing the
attacker to aquire control over the network.

peer-exchange algorithm used. As noted in the
previous section about the resiliency of botnets,
modern botnets spend a high amount of effort
and time to deny the possibility of a controlled
invasion of a bot’s peerlist. As with the Sybil ex-
planation, I have again provided a graphic which
shows the basic concept of the eclipse attack.

Figure 11: A bot which is fully encapsulated by nodes, which
are controlled by the attacker. The bot therefore
cannot gain access to communication with the rest
of the network.

Of course, there are more attacks possible than the
two I have described. For instance, the partitioning at-
tack, or the sinkhole, explained in the previous section
about disruption resilience, would also be categorized
as mitigation techniques.

4.3 Exploitation

Lastly, the category exploitation categorizes strategies
and techniques which exploit the mistakes of the
bot herder or the creator of the bot’s software. For
instance, some botnets include the functionality in
their bots to uninstall themselves, when they detect
that they are being run in a fake environment, like a
sandbox or a virtual machine. If we could trigger this
method on every bot, regardless of whether or not it is
run inside a sandbox, then the whole botnet would

be taken down, as the participating bots would stop
to exist. But not only this can be exploited, just like
bugs in normal products, we can also analyze the bots
software for other vulnerabilities and use these to stop
the bot. Moreover, misconfigurations can too lead to
the same result.

Of course, this strategy is associated with a high
risk since exploits can easily crash and/or damage im-
portant systems. Furthermore, they come with great
problems in regard to most countries laws and raise
moral questions, which are discussed in the upcoming
chapter.

4.4 Legal and ethical problems

When it comes to takedown methods and their
associated legal problems, there is a lot to watch out
for. Most botnets are not restricted to certain countries
and instead operate all over the world—botnets do
not keep to borders, so to say. As such, we lack
global legislation as a legal ground for any operations
to take them down. When it comes to centralized
architectures, it is necessary to keep to the laws of
the countries in which the command & control server
resides. In P2P networks, things start to get undefined.
Which laws do apply in a network, which has no
central point and instead operates worldwide?

Even when we opt for non-offensive options like
sinkholing, we still need to watch out for not doing
something potentially illegal. As I have noted when
discussing the sinkholing technique, it comes with
the problem of dealing with sensitive data. If the
sinkholing happens in states of the European Union, it
means that there is the need to comply with the GDPR.
Moreover, when the takedown is performed by private
entities, they risk rendering the evidence useless, as
it not only falsifies it, it is sometimes even illegally
obtained. Some states, like the Netherlands and
Germany, have put laws in place, which allow the use
of illegally obtained evidence when it is handed over
to law enforcement[20]. This is particularly important,
as even seemingly (legally) safe strategies like the
poisoned fruit can mean trouble for the prosecution of
the bot herder.

Using exploits to bring a botnet down is another part
where trouble arises: In many countries, running code
on a device without the permission of the owner is
illegal. It also brings up the question who would be
liable for any damages, when the device is interrupted
in its normal operation?

Blocking the connection to command & control
servers or the network, for instance on the ISP level,
requires the inspection and modifying of network
traffic. Usually, this is not allowed without a warrant.
This also brings us to the second part of this section:

Page 12 of 15

The Botnet That Would Not Die

the moral problems that arise, when we take a botnet
down.

We cannot rely on the end-user in order to mit-
igate botnets, as most do not have the required
knowledge or skills to clean their infected machines.
Often the end-user does also just not notice that his
toaster is now part of a global botnet. Even opting for
mostly risk-free methods, like taking the command &
control server offline by a Denial of Service attack,
might lead to other, uninvolved parties suffering from
the consequences, such as those who host their server
at the same place as the bot herder. The inspection of
network traffic at ISP level would be a good way to
take a botnet down, yet exactly this infrastructure can
be abused for censoring purposes. Taking over control
over a device to fix it also bypasses the control of the
owner, even though it sounds absurd that one would
like their device to continue being part of a botnet.

For further input on these ethical questions in
regard of doing research in the field of botnet
mitigation, I will refer the interested reader to “A
Case Study in Ethical Decision Making Regarding
Remote Mitigation of Botnets”[8] by Dittrich, Leder,
and Werner.

5 Closing remarks

Figure 12: Credits go to xkcd[21] for creating this comic.
Hover text: “If they’re getting valuable enough stuff
from you, at least the organized crime folks have an
incentive to issue regular updates to keep the appli-
ance working after the manufacturer discontinues
support.”

In this paper, I gave a few examples how botnets
still pose a problem, presented an overview about the
architecture of botnets and their general characteris-
tics, what we can do against them and what the risks
are when it comes to newer, offensive methods.

To sum up: The threat of botnets continues to
exist and their advancements in regard to resilient
designs will make it harder to take them down. As
more and more day to day devices are getting access
to the internet as part of the internet of Things, the
possible attack vectors for potential botnets are getting
progressively more. The ongoing trend of automation
and data exchange in manufacturing technologies
also contributes to this, as it allows for blackmailing
companies with their critical infrastructure.

However, recent developments, like the poisoned
fruit concept promise to be a good way for low risk
associated defense methods. Additionally, methods like
exploiting bugs found in the software will not disappear
in the near time, thus still leaving options against highly
resilient botnets, when everything else fails.

Bibliography

[1] Antonakakis, Manos et al. “Understanding the
Mirai Botnet”. In: Proceedings of the 26th
USENIX Conference on Security Symposium.
SEC’17. Berkeley, CA, USA: USENIX Association,
2017, pp. 1093–1110. isbn: 978-1-931971-40-
9. url: http://dl.acm.org/citation.cfm?
id=3241189.3241275.

[2] Baderj. baderj/domain_generation_algorithms.
url: https://github.com/baderj/domain_
generation _ algorithms / blob / master /
mydoom/dga.py.

[3] Brown, Dennis. “Resilient Botnet
Command and Control with Tor”. A
video of the talk can be found under:
https://www.youtube.com/watch?v=X7kkwOjsFQA.
2013.

[4] Bursztein, Elie. Inside the infamous Mirai IoT
Botnet: A Retrospective Analysis. 2017. url:
https : / / blog . cloudflare . com / inside -
mirai - the - infamous - iot - botnet - a -
retrospective-analysis/.

[5] Cosovan, Doina. Gameover Zeus Variants Tar-
geting Ukraine, US. 2014. url: https://labs.
bitdefender.com/2014/08/gameover-zeus-
variants-targeting-ukraine-us/.

[6] Daniel Plohmann Elmar Gerhards-Padilla, Felix
Leder. Botnets: Measurement, Detection, Disin-
fection and Defence. Tech. rep. enisa, 2011.

[7] Davis, C. R. et al. “Sybil attacks as a mitigation
strategy against the Storm botnet”. In: 2008
3rd International Conference on Malicious and
Unwanted Software (MALWARE). 2008, pp. 32–
40. doi: 10.1109/MALWARE.2008.4690855.

Page 13 of 15

http://dl.acm.org/citation.cfm?id=3241189.3241275
http://dl.acm.org/citation.cfm?id=3241189.3241275
https://github.com/baderj/domain_generation_algorithms/blob/master/mydoom/dga.py
https://github.com/baderj/domain_generation_algorithms/blob/master/mydoom/dga.py
https://github.com/baderj/domain_generation_algorithms/blob/master/mydoom/dga.py
https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/
https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/
https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/
https://labs.bitdefender.com/2014/08/gameover-zeus-variants-targeting-ukraine-us/
https://labs.bitdefender.com/2014/08/gameover-zeus-variants-targeting-ukraine-us/
https://labs.bitdefender.com/2014/08/gameover-zeus-variants-targeting-ukraine-us/
https://doi.org/10.1109/MALWARE.2008.4690855

The Botnet That Would Not Die

[8] Dittrich, David, Leder, Felix, and Werner, Till-
mann. “A Case Study in Ethical Decision Mak-
ing Regarding Remote Mitigation of Botnets”.
In: Proceedings of the 14th International Confer-
ence on Financial Cryptograpy and Data Secu-
rity. FC’10. Berlin, Heidelberg: Springer-Verlag,
2010, pp. 216–230. isbn: 3-642-14991-X, 978-
3-642-14991-7. url: http://dl.acm.org/
citation.cfm?id=1894863.1894883.

[9] Georg Wicherski Tillmann Werner, Felix Leder
and Schloesser, Mark. “Stormfucker: Owning
the Storm Botnet”. A video of the talk can be
found in under media.ccc.de. 2008.

[10] Goodin, Dan. Brace yourselves-source code pow-
ering potent IoT DDoSes just went public.
2016. url: https : / / arstechnica . com /
information- technology/2016/10/brace-
yourselves - source - code - powering -
potent-iot-ddoses-just-went-public/.

[11] Hickton, David J. 2014. url: https://www.
justice.gov/sites/default/files/opa/
legacy/2014/05/30/complaint.pdf.

[12] Holz, Thorsten et al. “Measurements and Mit-
igation of Peer-to-peer-based Botnets: A Case
Study on Storm Worm”. In: Proceedings of the
1st Usenix Workshop on Large-Scale Exploits and
Emergent Threats. LEET’08. San Francisco, Cali-
fornia: USENIX Association, 2008, 9:1–9:9. url:
http : / / dl . acm . org / citation . cfm ? id =
1387709.1387718.

[13] Holz, Thorsten et al. Measuring and Detecting
Fast-Flux Service Networks.

[14] Kang, J. and Zhang, J. “Application Entropy
Theory to Detect New Peer-to-Peer Botnet with
Multi-chart CUSUM”. In: 2009 Second Interna-
tional Symposium on Electronic Commerce and
Security. Vol. 1. 2009, pp. 470–474. doi: 10.
1109/ISECS.2009.61.

[15] Krebs on Security. url: https : / /
krebsonsecurity.com/2014/06/operation-
tovar - targets - gameover - zeus - botnet -
cryptolocker-scourge/.

[16] Leder, Felix, Werner, Tillmann, and Martini, Pe-
ter. “Proactive Botnet Countermeasures – An
Offensive Approach”. In: (Jan. 2009).

[17] Rawdat, Amir. Testing the Performance of NG-
INX and NGINX Plus Web Servers. 2017. url:
https : / / www . nginx . com / blog / testing -
the - performance - of - nginx - and - nginx -
plus-web-servers/.

[18] Rossow, C. et al. “SoK: P2PWNED - Modeling
and Evaluating the Resilience of Peer-to-Peer
Botnets”. In: 2013 IEEE Symposium on Security
and Privacy. 2013, pp. 97–111. doi: 10.1109/
SP.2013.17.

[19] Sidi, Lior, Nadler, Asaf, and Shabtai, Asaf.
“MaskDGA: A Black-box Evasion Technique
Against DGA Classifiers and Adversarial De-
fenses”. In: CoRR abs/1902.08909 (2019).

[20] Silva, Karine e. A Silver Path: Ideas for Improv-
ing Lawful Sharing of Botnet Evidence with Law
Enforcement. url: https : / / www . botconf .
eu / 2017 / a - silver - path - ideas - for -
improving - lawful - sharing - of - botnet -
evidence-with-law-enforcement/.

[21] Smart Home Security. url: https://xkcd.com/
1966/.

[22] Tillmann, Werner. “Prowling Peer-to-
Peer Botnets After Dark”. A video
of the talk can be found under:
https://www.youtube.com/watch?v=sJiknNjeIE8.
2013.

[23] Yoshida, Masahiro et al. “Controlling File Dis-
tribution in Winny Network Through Index Poi-
soning”. In: Proceedings of the 23rd International
Conference on Information Networking. ICOIN’09.
Piscataway, NJ, USA: IEEE Press, 2009, pp. 210–
214. isbn: 978-1-4244-4526-4. url: http://
dl . acm . org / citation . cfm ? id = 1699392 .
1699435.

[24] Zhang, Peiqing and Helvik, Bjarne. “Modeling
and analysis of P2P content distribution under
coordinated attack strategies”. In: Feb. 2011,
pp. 131 –135. doi: 10 . 1109 / CCNC . 2011 .
5766437.

List of Figures

1 Lifetime of various botnets. Taken from
the Rossow et al. [18]. 2

2 Telnet scans from Mirai which were
logged at cloudflares honeypots. Taken
from Bursztein [4]. 2

3 Basic overview over the network topol-
ogy of a centralized botnet. 3

4 Sinkhole concept 4
5 Fast Flux Network 6
6 Simplified version of an unstructured

P2P network, where each bot has 3
other peers with whom he can talk. . . 7

7 Structure of a structured P2P network,
using distributed hash tables to identify
and locate nodes. 7

8 A basic crawling algorithm in pseudo-
python. It is an adapted version from
Rossow et al. [18] P2P Botnet Graph
Search algorithm. The size can be esti-
mated using the size of the visited peers
list. 9

Page 14 of 15

http://dl.acm.org/citation.cfm?id=1894863.1894883
http://dl.acm.org/citation.cfm?id=1894863.1894883
https://arstechnica.com/information-technology/2016/10/brace-yourselves-source-code-powering-potent-iot-ddoses-just-went-public/
https://arstechnica.com/information-technology/2016/10/brace-yourselves-source-code-powering-potent-iot-ddoses-just-went-public/
https://arstechnica.com/information-technology/2016/10/brace-yourselves-source-code-powering-potent-iot-ddoses-just-went-public/
https://arstechnica.com/information-technology/2016/10/brace-yourselves-source-code-powering-potent-iot-ddoses-just-went-public/
https://www.justice.gov/sites/default/files/opa/legacy/2014/05/30/complaint.pdf
https://www.justice.gov/sites/default/files/opa/legacy/2014/05/30/complaint.pdf
https://www.justice.gov/sites/default/files/opa/legacy/2014/05/30/complaint.pdf
http://dl.acm.org/citation.cfm?id=1387709.1387718
http://dl.acm.org/citation.cfm?id=1387709.1387718
https://doi.org/10.1109/ISECS.2009.61
https://doi.org/10.1109/ISECS.2009.61
https://krebsonsecurity.com/2014/06/operation-tovar-targets-gameover-zeus-botnet-cryptolocker-scourge/
https://krebsonsecurity.com/2014/06/operation-tovar-targets-gameover-zeus-botnet-cryptolocker-scourge/
https://krebsonsecurity.com/2014/06/operation-tovar-targets-gameover-zeus-botnet-cryptolocker-scourge/
https://krebsonsecurity.com/2014/06/operation-tovar-targets-gameover-zeus-botnet-cryptolocker-scourge/
https://www.nginx.com/blog/testing-the-performance-of-nginx-and-nginx-plus-web-servers/
https://www.nginx.com/blog/testing-the-performance-of-nginx-and-nginx-plus-web-servers/
https://www.nginx.com/blog/testing-the-performance-of-nginx-and-nginx-plus-web-servers/
https://doi.org/10.1109/SP.2013.17
https://doi.org/10.1109/SP.2013.17
https://www.botconf.eu/2017/a-silver-path-ideas-for-improving-lawful-sharing-of-botnet-evidence-with-law-enforcement/
https://www.botconf.eu/2017/a-silver-path-ideas-for-improving-lawful-sharing-of-botnet-evidence-with-law-enforcement/
https://www.botconf.eu/2017/a-silver-path-ideas-for-improving-lawful-sharing-of-botnet-evidence-with-law-enforcement/
https://www.botconf.eu/2017/a-silver-path-ideas-for-improving-lawful-sharing-of-botnet-evidence-with-law-enforcement/
https://xkcd.com/1966/
https://xkcd.com/1966/
http://dl.acm.org/citation.cfm?id=1699392.1699435
http://dl.acm.org/citation.cfm?id=1699392.1699435
http://dl.acm.org/citation.cfm?id=1699392.1699435
https://doi.org/10.1109/CCNC.2011.5766437
https://doi.org/10.1109/CCNC.2011.5766437

The Botnet That Would Not Die

9 Basic principle of an index poisoning
attack. The attacker inserts another lo-
cation into the index so that any bot
who queries it will not be able to lo-
cate the requested file and instead has
to lookup another location. The DHT
is distributed over all bots in the net-
work and not a central structure. The
5. step is that Bot D tries to download
from one of the two provided Bots. In
the case of Bot E, it will fail to fetch the
file, while succeed with Bot A, thereby
reducing the effectiveness. Step 5 has
been excluded from the graphic for bet-
ter readability. 11

10 A network invaded by sybil nodes, al-
lowing the attacker to aquire control
over the network. 12

11 A bot which is fully encapsulated by
nodes, which are controlled by the at-
tacker. The bot therefore cannot gain
access to communication with the rest
of the network. 12

12 Credits go to xkcd[21] for creating this
comic. Hover text: “If they’re getting
valuable enough stuff from you, at least
the organized crime folks have an in-
centive to issue regular updates to keep
the appliance working after the manu-
facturer discontinues support.” 13

Page 15 of 15

	Motivation
	Example: GameOver ZeuS
	Example: Mirai
	Problem description

	Centralized Botnets
	Architectural advantages and disadvantages
	Takedown Methods
	Hiding the Command & Control Server

	P2P Botnets
	Architectural advantages and disadvantages
	Resilience of P2P Networks
	Intelligence gathering resilience
	Disruption resilience

	Options against P2P Botnets
	Reducing effectivity of P2P Networks
	Mitigation
	Exploitation
	Legal and ethical problems

	Closing remarks

