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Abstract

We present a method which resolves twisted surface regions within a surface reconstruction approach that uses
local refinement operations to iteratively fit a surface into an unorganized point cloud. We show that this local
operation can be integrated reliably and efficiently, although resolving twisted surfaces is not a local operation
since it may cause modifications up to one half of the entire surface. We introduce a novel data structure called the
minimal edge front that enables efficiently retrieving topological information from the surface under investigation.
Equipped with this operation the algorithm is able to robustly handle huge point-clouds of complex closed and
also not closed objects like landscapes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations; Geometric algorithms, languages, and
systems; I.2 [Numerical Analysis]: Approximation—Approximation of surfaces and contours
Keywords: surface reconstruction, point-cloud, iterative refinement, growing cell structures

1. Introduction

Reconstruction of surfaces from unorganized point-cloud is
a well known problem. For most practical computer graph-
ics applications triangular meshes need to be oriented and
fulfill the manifold criterion. These properties are essential
for many mesh processing applications and can be used to
optimize the rendering process.

Many common surface reconstruction algorithms require
data points which are augmented with normal vectors which
explicitily define the surface orientation [KBH06, OBA∗03,
ABCO∗01, CBC∗01]. In these cases normals are either es-
timated or derived from certain technical conditions. For
example, in [SSZCO10] the direction to the scanner head
from each sample point is utilized. Normal estimation is re-
alized in [ABK98] by the determination of the farthest ver-
tices of the Voronoi cell of a point, the poles. Sensibility
to noise and non-uniform sample densities is accounted for
in [MAVdF05].

In [HDD∗92] a prominent normal estimation mechanism
is described. With the k nearest neighbors to a data point
p the plane with p as its pivot element and with the low-
est squared distance to these k points is assumed to be the

tangent plane of p. The problem of this method is to find a
suitable value for k which is, on the one hand, big enough
to deal efficiently with noise and, on the other hand, small
enough to include only points which are geometrically rele-
vant concerning p. After the estimation of the normal vectors
they need to be oriented. For densely scanned volumetric ob-
jects this can reliably be accomplished by defining it based
on the inner and outer poles of a vertex [ABK98]. The as-
sumption of having a volumetric object is made in many re-
construction algorithms [SSZCO10,KBH06,HK06,SLS∗06,
OBA∗03, CL96]. These approaches, on the one hand, are
able to deal with incomplete data and thus generate water-
tight surfaces. On the other hand, this is a serious limita-
tion in case of, i.e., landscapes or partially retrieved objects
which are not supposed to be watertight.

For non-solid objects or noisy and non-uniform sample
data the orientation of the estimated normals need to be con-
sistently propagated through the point-cloud. In [HDD∗92]
the orientation is propagated from one initial point over the
edges of the minimal spanning tree of the absolute dot prod-
ucts of neighboring point normals. This causes the propa-
gated to be done across the most parallel normals. The gen-
eral problem of calculating normals on a local point level
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Figure 1: An iterative refinement approach for surface reconstruction. Challenging regions are easily handled through the
incremental adaption of solutions at successive stages. See the region at the dragon’s leg (left) and the improvement levels of
the reconstruction process (right).

is the assumption that a local point subset exists that allows
for drawing a conclusion about the unknown global surface.
This assumption does not hold in case of noise, non-uniform
sample densities, outliers, corners, creases — generally for
insufficiently sampled thin or tiny structures [LCOLTE07].
In [HLZ∗09] principal component analysis is used to esti-
mate normals after the point-cloud is released from noise,
outliers are removed, and the sample distribution is thinned
out in order to achieve evenly distributed point samples.

Region growing approaches [GK02, BMR∗99] propagate
an initial orientation thru the point-cloud. This propagation
often fails if the orientation is not locally recognisable. Some
approaches operate on non-manifold, non-oriented meshes
[DRADLN10, CLK09, HF08] and fix the generated meshes
in a post-processing step. To propagate an orientation thru a
non-oriented triangular mesh is a very complex and ambigu-
ous problem.

The moving least square (MLS) approach [Lev03] ex-
poses good capabilities concerning challenging scanned
data. Some approaches start with the precomputation of ori-
ented tangent planes as a projection domain for higher de-
gree polynomials which approximate the point data. In these
approaches, the contribution of a single polynomial at a
given surface point is defined by a non-negative weight func-
tion. [ABCO∗01] presents a practical implementation and
[LCOLTE07] suggest an alternative projection method.

[IJS03b] propose an iterative refinement approach for sur-
face reconstruction which extends a general neural comput-
ing approach from Fritzke [Fri93] by a smoothing operation
presented by Taubin [Tau95]. Here, a surface is represented
by an explicit mesh that consists of triangles with a given

orientation and which incrementally grows during a training
process (see Fig. 1).

One important problem of this approach is that objects
to be modeled adhere to topology which has to be defined
initially — the mesh homeomorphism is static. Cutting and
coalescing the mesh during the iterative growing process are
imperative to match arbitrary homeomorphisms. In [IJS03a]
the triangle size is suggested as an indicator for a cut op-
eration and in [AB10] cutting the mesh is triggered by high
vertex valences. Although these approaches are promising in
creating acceptable surfaces even for above mentioned prob-
lems and unclosed objects, they may produce inconsistent
overall surface orientations in cases where differently ori-
ented surface pieces melt together. The arising surface twists
can not be resolved by local refinement procedures (see Fig.
2).

In the following we give a brief introduction into the
underlying iterative surface reconstruction algorithm and
present a general solution to the problem of twisted surface
orientations. Finally we prove validity, reliability, and effi-
ciency of the presented approach by applying several test
cases.

2. Iterative Refinement Approach for Reconstruction

The basic concept of an iterative refinement process is to fit
an initial surface into an unorganized point-cloud. The initial
surface is commonly represented by a very simple mesh of
oriented triangles, like a tetrahedron. The refinement process
randomly selects a samples of the point-cloud and then de-
forms the current surface in order to progressively minimize
its distance to the given sample. This basic step is repeated
constantly throughout the algorithm. During this iteration
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Figure 2: Several examples of twisted connections of surface pieces. Twists at boundary vertices (right and left), and a self
intersection (middle). Note that contrary oriented triangles are never connected directly.

the process keeps track of the local surface error which is
based on the point samples’ distance and which can be mea-
sured in different ways. These errors are used to determine
surface areas which need to be refined by local subdivision
processes. Subdivision and further iterations lead to a better
match of the mesh to the sample distribution and the process
is stopped when the representation error reaches a certain
minimum. Iterative refinement approaches compete with the
state of the art in surface reconstruction but they expose ad-
vantages in robustness and flexibility. Due to its incremental
kind of training and the locality of mesh modifications they
are able to match nearly any given surface. Nevertheless the
local type of mesh adaption makes it difficult to solve global
mesh problems like twists of the orientation of subsets of
triangles. In the following we describe an algorithm which
rises that challenge.

A typical iterative refinement process for mesh recon-
struction has been presented by the Growing Cells Meshing
(GCM) algorithm [AB10]. It is the base for the following
discussions, but our approach is generally suitable for any
kind of iterative local reconstruction schemes. A comprehen-
sive outline of the GCM algorithm is exposed in algorithm
1. Here a mesh based surface is repeatedly deformed by
moving the closest vertex and its neighbors toward the ran-
domly selected samples. Using a vertex-local signal counter
the process keeps track of how often vertices have been se-
lected during the iterations. When a certain number of de-
formations at a vertex took place, the surface there is re-
fined by adding a new vertex through a vertex split opera-
tion. Vertices which have been selected rarely are removed
by edge collapse operations. If a vertex valence indicates a
misplaced surface the vertex is removed together with the
surrounding faces. The latter operation allows for opening
the surface. Coalescing operations then seal and rearrang-
ing the surface. Iterations are repeated until accuracy ex-

ceeds a certain threshold. For further details on the algorithm
see [AB10].

3. The Emergence of Global Twists

An iterative refinement approach is very capable in creat-
ing sound orientated surfaces. Surfaces always evolve from
former surface stages. This kind of inertia avoids local twits
caused by ambiguous point constellations. At any stage of
the iterative process the current surface can be seen as a
guess, based on the sample information that has been en-
countered so far. The more information is processed, the
more precise this guess becomes. If however the topology
has been guessed incorrectly, this might lead to a surface
twist. If for example an s-shaped plane is reconstructed with
little sample information processed so far the structure might
be recognized as being box-shaped leaving the plane ends
with opposing orientations. When the process refines the sur-
face further and the correct shape of the surface becomes ev-
ident the different orientations will collide at some point and
can not be resolved by local refinement operations.

4. Resolving Twisted Surfaces in Iterative Refinement

Our approach involves three basic steps to solve the twisted
surface problem. First, a twist within the current surface is
identified, second, the twisted surface is separated from the
mesh, and third, the twisted surface is turned around.

The third step is fairly easy. Depending on the underly-
ing data structure, explicit normals are inverted, or vertex
orders are reversed if a mesh partition’s orientation needs to
be changed.

The first step is invoked at every coalescing operation
(line 9 at algorithm 1). This is a convenient location to attach
this function since it already involves a boundary vertex vx,
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Algorithm 1 The complete iterative refinement algorithm
without the surface twist operation. Conditions 1 and 2 can
be defined as simple counters or depending on a certain
approximation error. Overall performance does not signifi-
cantly depend on them.

1: Given a point-cloud P = {p1...pn} and an initial Mesh
M= {v1...vn}.

2: repeat
3: repeat
4: repeat
5: Select random sample px of P and search vertex

vx with smallest Euclidian distance to px.
6: Move vx towards px.
7: Smoothen all direct neighbors of vx.
8: Increase signal counter of vx and decrease all

others.
9: If vx is a boundary vertex then search for oppos-

ing boundary vertex vopp and coalesce both if
their normals have the same orientation.

10: until condition 1 holds.
11: Add new vertex at the vertex with highest signal

counter through a vertex split operation.
12: until condition 2 holds.
13: repeat
14: Search for vertex vnull with the lowest signal

counter.
15: if valence of vnull indicates a misplaced surface

then
16: Remove vnull and its surrounding triangles.
17: else
18: Remove vnull by an edge collapse operation.
19: end if
20: until no vertices with low signal counters exist.
21: until accuracy exceeds a certain threshold.

the search for an opposing boundary vertex vopp, and testing
of their orientations.

4.1. Twist Detection

A twist between two boundaries is determined by opposite
normal orientations at the same planar domain. This is the
case if, first, the size of the angle α between the normals nx
and nopp of the opposing vertices vx and vopp exceeds 170◦,
and second, if vx and vopp lie at the same planar domain, i.e.,
if the angle β between nx and −−−−→vxvopp differs not more than
between 80◦ and 100◦. Since nopp and nx are more or less
parallel the latter also includes the test for vx (see Fig. 3).

Since resolving a twist is very costly, superfluous pro-
cesses should be avoided. Thus, the above test is repeated
for both neighbors of vx and vopp, and only if all three tests
expose a twist a valid detection is assumed.

On the one hand, this kind of detection is chosen arbitrary

Figure 3: Detection of a twisted surface through angles α

between the normals and β between a normal and the vector
connecting the two vertices under consideration.

and one can think of several alternatives. On the other hand,
the specific kind of test is not that significant in the overall
algorithm’s validness or performance, since it is not required
to detect a twist at a very early stage as long as it is detected
at some time. The latter is guaranteed by the refinement pro-
cess of the GCM. The only possible case of a fail of this
approximate detection arises if the twist is not exposed at
any boundary or if the twisted surface has not been clearly
exposed before the process ends.

4.2. Twist Separation

When the surfaces which vx and vopp belong to are detected
as being twisted, one of them needs to be turned around.
As long as the surfaces are connected, the turning opera-
tion would fail since both surfaces would be turned which
would not solve the twist. It seems to be surprising that dif-
ferently orientated surface areas could be connected since
the coalescing process would avoid such a connection. Nev-
ertheless, this case actually may happen if these surfaces are
connected through an earlier refinement stage where the dif-
ference of the normals have not yet been developed that far.
Fig. 2 gives an impression of the various kinds of connec-
tions that may exist between twisted surfaces. To single out
these different structures by heuristics using geometric prop-
erties like vertex positions and normals is extremely difficult
and unreliable. To avoid this, we rely on the mesh topology
only for detecting these cases. It is achieved by a data struc-
ture that can reveal different kinds of mesh topology based
information — a minimal edge front. It consists of multiple
closed circular bands of mesh edges that enclose all vertices
of a certain edge-wise distance to an initial starting point.
For example, if a minimal edge front is expanded two times
from an initial vertex it will enclose all vertices that can be
reached from this initial vertex in a distance of two mesh
edges (see a) in Fig. 4). A minimal edge front is minimal
in the way that the vertices it surrounds cannot be enclosed
by a smaller number of mesh edges. Every expansion level
is unique and therefore reversible.

To find out if vx and vopp are connected we initialize two
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Figure 4: Different cases while expanding a minimal edge
front. a) Expansion from an initial stage from one vertex to
the second expansion level, b) Collision and merging while
expanding an edge front, c) Annihilation of an edge front
that can not be expanded further.

minimal edge fronts at each vertex and propagate them until
they collide (see b) in Fig. 4) or until one of them is an-
nihilated (see c) in Fig. 4), which means that it can not be
expanded anymore and did not yet reach the other vertex.
The latter means that vx and vopp are unconnected and since
the extension of both fronts have been run concurrently,
the vertex of the annihilated front belongs to the smaller
surface partition. At this point the separateness of vx and
vopp is proven and the orientation of the smaller partition is
switched. If vx and vopp are connected the according mesh
parts must be separated before turning one of them around.
To separate them, we calculate the edge-wise shortest con-

nection path between vx and vopp (see a) in Fig. 5) and then
search the shortest cut to interrupt this connection path.

In a first stage we search for the shortest cut on the path
that starts and ends at a boundary vertex. The search starts
with the cut length zero involving a vertex that has more
than two boundary edges (see b) in Fig. 5). The search is
accomplished for all vertices on the path. If a zero length
cut can not be found the search length is increased by one.
To search for a higher cut length than zero along the path,
we determine the two closest boundary vertices to a given
vertex of the connection path. The search is performed with
the minimal edge front from above. The connection between
these two boundary vertices defines a cutting path. In c) Fig.
5 a cutting path of length one is shown. It needs to be tested
if this cut would actually interrupt the path between vx and
vopp. e) Fig. 5 shows a cutting path of length one that fails to
interrupt the connection path. It also needs to be checked if
the cut would detach vx or vopp from the surface like shown
in f) Fig. 5.

If no sufficient cut could be found in the first stage, the
second search stage will be started. Here, circular cuts are
investigated, which do not necessarily involve boundary ver-
tices, and which are defined by a cutting path with circular
connected edges. The search for circular cuts starts with the
length of three as shown in d) in Fig. 5. When a vertex on
the path is tested, a minimal edge front is initialized at that
vertex and the front is expanded until a collision of the front
takes place (see b) in Fig. 4), or the current search length is
exceeded. If this path interrupts the connection path between
vx and vopp and the triangles intersect each other, like in d)
Fig. 5, it is a valid cutting path.

If a cutting path has been found which satisfies the above
criteria, a cut will be performed. All edges of the side of the
cutting path that includes less triangles are deleted. Now vx
and vopp are tested again for a connection and the process
repeats until vx and vopp are separated.

5. Results

Twist resolving in an iterative refinement algorithm is a
novel addition to the approach and in this section we focus
on the reliability and efficiency of the presented algorithm.
Since our approach has no influence on the general surface
reconstruction mechanism, we refer to [AB10, IJS03b] for
quality analysis of the algorithm.

The runtime complexity of the GCM algorithm is
O(nlogn) where n is the number of vertices in the final
mesh [AB10]. In the following we will approximately de-
termine the complexity of the presented operation. If we as-
sume that the twist detection works correctly and the un-
known surface is orientable, then — once detected — twists
will be resolved again and again, which strongly limits the
number of twists that can realistically occur in a reconstruc-
tion process. The worst case concerning memory and run-
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Figure 5: vx and vopp with their connection path a). A cut
of length zero b) and one c) from boundary to boundary. A
circular cut of length three through a self intersecting sur-
face d). An illegal cutting path that would not interrupt the
connection path e). An illegal cutting path that would detach
vx from the surface f).

time complexity would take place at the end of the algorithm
if both regions have the same size of n

2 , since the searching
mechanism visits the biggest number of possible vertices.
The memory complexity of the minimal edge front is O(

√
n)

since the front’s dimension is one and it expands uniformly
over the surface. The runtime complexity can be determined
by the number of vertices visited while searching the con-
nection path and the number of search passes that are per-
formed until the regions are separated. The search for a cut
along the connection path and the switching operation are
both done in addition to the search for the connection path,
but both have smaller complexity. The number of vertices
visited by the search operation is proportional to n and the
search has to be accomplished for all incorrect connections.
Since the crack between the differently oriented surface ar-
eas can be assumed as being one-dimensional and not ex-
posing a fractal structure the number of possible wrong con-
nections is

√
n. This creates an overall worst case complex-

ity of O(n
3
2 ). However, that a twist in a huge surface area

remains undetected throughout the entire process is very un-
likely. Twists are detected at a relatively constant stage in
their development. Thus in the average case the effort of the
twist resolving process is not depending on n.

The Stanford Dragon model serves as a good example
for a point cloud that should not produce twisted surfaces
at all, the Vault model is a suitable example for a sim-
ple twisted surface, and finally, the complex Heating Pipes
model includes noise, outliers and non-uniform sample den-
sities which requires multiple twist resolving processes. Fi-
nally, we provoke the algorithm with an extreme model con-
cerning twists — the point cloud of the Möbius strip. The
first time, all tests run without enabling the presented algo-
rithm, and after this, the twist resolution step is added (see
table 1 and Fig. 6).

We ran the Heating Pipes model using different random
seeds leading to different amounts of resolving processes
but always to a soundly oriented final surface. This reliabil-
ity is achieved through using the mesh topology rather than
geometric properties of the vertices. The following results
have been produced on an Intel R©Core 2 Extreme Quad Core
QX9300 (2.53GHz, 1066MHz, 12MB) processor with 8GB
1066 MHz DDR3 Dual Channel RAM. The algorithm is not
parallelized.

The presented minimal edge front data structure is a very
fast way for gaining edge based distances and other mesh
related information while having a very small memory foot-
print. On average for 1000 different starting vertices, a min-
imal edge front needs 0.343s to visit all vertices of the
Dragon model, while it consists at its maximum of 3069
edges.

The maximum number of twist resolving processes dur-
ing the Heating Pipes model reconstruction were three. The
impact on runtime is obviously beneath the standard devia-
tion of the processes duration (see table 1) since the Heating
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#Pts #Trigls without with #resolvings

438K 100K 51sec 51sec 0

368K 40K 16sec 16sec 1

918K 100K 73sec 72sec 3

163K 40K 13sec 76sec 374

Table 1: The table shows results for different models. “#Pts”
the sample size of the point cloud, “#Trigls” the number of
triangles in the final mesh, time “without” the twist resolv-
ing process, time “with” the twist resolving process, “#re-
solving” the number of completed resolving processes.

Pipes where even faster in our test with the twist resolving
process. For the Möbius strip however the twist resolving
process was started 374 times until the demanded vertex res-
olution was reached, which had a significant impact on the
overall runtime of the process.

6. Conclusion and Future Work

An iterative refinement process for surface reconstruction
has a lot of advantages like the creation of different levels of
detail, a strong robustness against noise, the ability to pro-
cess arbitrary amounts of point data, and being able to create
a correct surface gradient even in areas where point normal
estimation is hardly to accomplish.

However, up to now, this process was limited to point data
which do not cause twists in the produced surface. With the
presented method this limitation is lifted and eliminates the
last vital limitation to the class of surfaces being able to be
reconstructed by iterative refinement approaches.

The minimal edge front delivers a very general solution
to the problem of separating two surface areas, which for-
tunately does not depend on geometry based heuristics. The
structure could potentially be used to calculate texture coor-
dinates or geodesics on meshes, or to enable mesh decom-
position.

Our method is based on the assumption that surfaces with
different orientations can always be encountered at a bound-
ary edge. This assumption can fail if two entirely separate
objects are contained in one point-cloud or if the only cross-
ing of two differently oriented surfaces is a self intersec-
tion which is unlikely but possible. If a point-cloud contains
structures that are represented by only few points it may hap-
pen that a twisted surface can not be recognized.

Further, the process has shown weaknesses when solving
twists that are caused by thin structures — surfaces with op-
ponent orientations which lie close together — which the
approach covered as one surface at initial stages. It leads to
greater calculation times of the refinement process. Never-
theless, finally, twists are resolved correctly.
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