
Eurographics Symposium on Parallel Graphics and Visualization - Short Papers (2006)
Alan Heirich, Bruno Raffin, and Luis Paulo dos Santos (Editors)

A Simple, Distributed Rendering Toolkit for Multi-Screen,
Rendering Clusters

A. Tetzlaff1 C.-A. Bohn1 T. F. Horn2

1Wedel University of Applied Sciences
2Planetarium Hamburg

Abstract

We present a cluster-based rendering system for driving arbitrary multi-screen environments. Essentials of the
system are that there is no sophisticated synchronization hardware required; applications can be developed on
desktops and then are able to be copied on nearly any of such environments; the number of rendering nodes is
arbitrary scalable for driving any required resolution or any number of projection screens.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Distributed Rendering
Systems

1. Introduction

In recent years, with the development of graphics hardware
users’ demand in highly advanced graphics output became
a crucial issue. Since display sizes and resolutions seem to
meet their physical limits, the natural way to overcome this
limitation is to simply increase the number of displays and
combine them physically in a way that they imitate one large
screen.

Some early attempts are the well-known double-screen
desktop environments. More recent technologies include
Virtual Reality Technologies (i.e.,head-mounted displays
[FMHR87]), multi-screen training- (i.e. flight-, drive-) simu-
lators, multi-projector screens likeCAVE-like environments
[CNSD93], high-resolutionPower Walls[HH99], and dome-
like cinemas likeIMAX theaters and planetariums.

Vital challenge in developing applications for multi-
screen technologies is to handle the underlying rendering
hardware. Whereas two-screen environments often can be
realized by a single computer feeding one single graphics
card, more sophisticated installations often base on the use
of several PCs. Developers have to make strong efforts for
parallelizing the application and the rendering.

In this work we describe a system applicable to common
multi-screen environments, which is tested in a concrete in-
stallation — the Planetarium Hamburg [pla]. This planetar-

ium consists of seven rendering PCs driving seven projectors
forming together one spherical projection dome.

Usually, ac-

Figure 1: The Planetarium-Hamburg
— test case for the presented approach.

cess to soft-
and hardware
of planetariums
for experimental
applications is
very restricted.
Often they only
run commercial
productions
which are pre-
rendered and just
“played”. Here,
parallelization
is realized by a
kind of a “parallelized video player”. Thus, incorporating
own (OpenGL-) applications must happen by avoiding
massive infringement on the daily operational demands of
such an environment and on secrecy issues from its hard-
and software supplier.

In this work, we show how such a rendering system can
be realized without any change in the aimed target hardware,
without touching the software configuration, and without a
vast amount of work put into parallelization issues of render-



A. Tetzlaff, C.-A. Bohn, & T. F. Horn / A Simple, Distributed Rendering Toolkit for Multi-Screen, Rendering Clusters

Figure 2: Partitioning of one screen into several sub-screen
connected to a single rendering node each. Nodes are sep-
arate programs, according to themaster-slave clustering
model, running on the same or different platforms.

ing tasks. Any pre-compiledOpenGL-application (the bina-
ries) just need to be copied and executed on each rendering
node.

Several alternative software packages for distributed ren-
dering are available, only mentioning some of them like
Chromium [HHN∗02], OpenSG[osg], the CAVE library
[cli], VR Jugglerand Net Juggler[jug], or Avango [avg].
A great comparison of these systems can be found in [vrc].

In the following we shortly outline the basics of our sys-
tem, present its vital advantages compared to classical ap-
proaches and finally we will conclude with a summary and
show two example applications.

2. Approach

Porting applications written forone graphical output to a
multi-screen environment is not a trivial task. Considering
the simplest case — one graphics card on one computer
drives two screens — the programmer must handle two
framebuffers. Going steps further would become harder —
two graphics cards need a parallelization of the rendering
tasks, two computers with own graphics hardware requires
additional parallelization of separate processes, additional
synchronization and network communication.

2.1. Structure of the Rendering Cluster

The underlying system consists of a set of rendering nodes
which create the final picture by rendering each a certain cut-
out of the whole spherical screen (see Figure2). The nodes
configuration can be classified according to [SWNH03] as
a typical master-slavecluster. The complete scene data is
available on every rendering node. The animation and ren-
dering status of each of them is controlled by one master
node which is also responsible for tracking and distributing
user interaction. In this work the term “node” is not con-
nected to a certain hardware platform, moreover rendering
nodes and the master node are just separate programs which
may run on different platforms but also as concurrent tasks
on the same platform. “Distributing an application” simply
means taking theOpenGLprogram and executing itn-times
asn separate tasks on one or more separate rendering plat-
forms.

After the start each rendering node first connects to the
master node. The master node then triggers the rendering
and “supervises” the rendering nodes in the following time.
Input events arising at the master’s periphery for, i.e., mod-
ifying the viewing parameters, are passed to each render-
ing node. Only in case of user interaction like key strokes
or mouse movements the according event data is transfered.
The amount of this data is negligible, thus we realized the
transfer by using common network transfer technology — a
100 MBit network, which even was the only available at our
test environment at the planetarium.

2.2. Synchronization

The separate pipelines must display their image parts in
a synchronized manner. In our application we are satis-
fied with a maximal delay of one frame on separate ren-
dering nodes. Thus, the approach is capable of driving all
non-stereo multi-screen systems, like in our application the
Planetarium-Hamburg, all active stereo systems with a spe-
cialized hardware synchronization like [dig], or all passive
stereo systems.

The basics of our synchronization are as follows. In ad-
vance to the start of the actual application all nodes of the
cluster have to connect to the master viaTCP. The master
listens for the rendering nodes at a predefined port to receive
their local configurations. Then it provides them with his de-
mand in rendering and simulation speed in terms of a certain
value offrames per second (FPS). Up to now the transfer is
not time-critical and thus delivered throughTCP.

To start the animation the master sends a start-command
via UDP to all nodes. Now, by choosingUDP we aban-
don the flow control overhead ofTCPenabling short trans-
port times for time-critical data like the start-command.
These transport times virtually are negligible. Then render-
ing nodes start at a predefined status — synchronized except
for the delay the UDP transfer causes. Through several tests



A. Tetzlaff, C.-A. Bohn, & T. F. Horn / A Simple, Distributed Rendering Toolkit for Multi-Screen, Rendering Clusters

we proved that the delay is clearly below one frame and thus
negligible.

After initial synchronized triggering the nodes compute
the animation parameters and finally render their frustum of
the scene. Herewith, every node tries to maintain the frame
rate demanded by the master node, i.e. if the master wants a
40 frames per second rate, the rendering node waits until a
full 1/40 of a second went by until the next frame is gener-
ated.

In other words, our synchronization is realized by the in-
ternal clocks of each rendering node. This is uncommon but
satisfies our application conditions excellently. It leads to the
fact that we virtually do not have synchronization transfer
overhead.

Of course a lack of synchronization may arise due to the
following reasons.

• The master’s distribution of the current frame number at
the start is delayed.

• The clock rate on separate nodes differ.
• Some nodes cannot achieve the requested rendering and

animation speed — they “arrive too late” after one ren-
dering task.

To avoid the first two cases “re-synchronization”-packets
are sent every few seconds. In all cases the according nodes
react in the same manner. They try to catch up to the cor-
rect frame number by skipping the rendering part and just
proceeding with the integration part of the animation.

This minimal amount of transfer makes it possible to scale
the number of rendering nodes arbitrary without reducing
the rendering performance.

2.3. Handling User Events from the Master Node

Events recorded by the master node have to be delivered to
the rendering nodes. Herewith, it must be guaranteed that
all nodes react on events at the same time — the same
frame number — otherwise the animation diverts on differ-
ent nodes. To avoid that, the master node collects and serial-
izes all events of the current frame, marks this event set by
the current frame number an distributes it viaUDP packets
to the rendering nodes. Each of them stores the dataset tem-
porarily and triggers the contained events not until it reaches
the frame number which the master attached at the event set.
Thus a consistent animation is guaranteed even if nodes lag
a frame due to their local rendering resources. By increment-
ing the assigned frame number before sending an event set
it is guaranteed that even nodes which are one frame ahead
will register the events at the right frame. Although this re-
sults in a minimal latency of user interactions it is preferable
compared to an inconsistent animation.

In our desktop environment and also in the planetarium’s
PC cluster, it has been shown that variations of up to two
frames do not affect the visual quality.

Figure 3: The user interface to define viewing and blending
parameters of overlapping projection areas illuminated from
different rendering nodes.

2.4. Edge Blending

Projections physically combined to large displays typically
overlap at the borders to avoid cracks in the whole projected
area. At these overlapping areas the generated image would
appear brighter if it is not dimmed accordingly at each par-
ticipating projector output. Since only few projectors have a
hardware edge blendingcapability to realize this adaption,
we added edge blending by software implemented through
using the blending facilities available on common graphics
cards.

2.5. Rendering Node Configuration

The basic configuration — parameters like shape, orienta-
tion, and position of the frustum — of each node of a multi-
screen environment is specified by oneXML -file per node.
It is parsed by the rendering application at startup and sent to
the master application when logging in. Here, also the edge
blending cut-out is defined by an arbitrary polygon which
can be defined through a graphical configuration interface
(see Figure3).

3. Results and Summary

Our proposal enables the user to write multi-screen environ-
ment applications fairly easy and straight-forward.

• Implementation:The user simply writes anOpenGLpro-
gram on a usual computer with one graphics pipeline.
Then, porting the application to the multi-screen environ-
ment means to copy it to all participating rendering nodes
only — not even another linkage is necessary.

• Synchronization:Synchronizing the rendering nodes is
accomplished every few seconds. Inbetween, synchro-
nized rendering is guaranteed through the internal clocks
of each node. With this attempt, only negligible data ex-
change between the master and the rendering nodes arises,



A. Tetzlaff, C.-A. Bohn, & T. F. Horn / A Simple, Distributed Rendering Toolkit for Multi-Screen, Rendering Clusters

Figure 4: Test applications (a particle system and a bunny model) of the presented system. Several separate rendering processes
running on each of two PCs.

which makes it possible to realize a rendering cluster of a
theoretically unlimited size. Another advantage is that the
system does not need sophisticated network hardware —
not even a gigabit network — to guarantee synchroniza-
tion between master and rendering nodes.

• Test case:We tested our software developed on a single
screen desktop PC in a professional, commercial environ-
ment. It worked from scratch without any re-compilation
proving its portability, simplicity, and robustness.

Figure4 exposes two example renderings of a simple par-
ticle system and the well-known bunny model. The software
of each of the shown implementations consists of just about
300 lines of source code. By usingQt4 [tro] for high-level
access to GUI, network, and threads, the framework is capa-
ble of being compiled under Windows and Linux. Adaption
to any other hardware environment (likeCones, CAVEs, or
Domes) only requires the modification of the frustum and
the edge blending parameters on each rendering node. The
development process of an application may be completely
decoupled from the target-environment.

References

[avg] http://www.avango.org.

[cli] http://www.vrco.com.

[CNSD93] CRUZ-NEIRA C., SANDIN D. J., DEFANTI

T. A.: Surround-screen projection-based virtual reality:
the design and implementation of the cave. InSIGGRAPH
’93: Proceedings of the 20th annual conference on Com-
puter graphics and interactive techniques(New York, NY,
USA, 1993), ACM Press, pp. 135–142.

[dig] http://www.digital-image.de.

[FMHR87] FISHER S. S., MCGREEVY M., HUMPHRIES

J., ROBINETT W.: Virtual environment display system.

In SI3D ’86: Proceedings of the 1986 workshop on Inter-
active 3D graphics(New York, NY, USA, 1987), ACM
Press, pp. 77–87.

[HH99] HUMPHREYS G., HANRAHAN P.: A distributed
graphics system for large tiled displays. InVIS ’99:
Proceedings of the conference on Visualization ’99(Los
Alamitos, CA, USA, 1999), IEEE Computer Society
Press, pp. 215–223.

[HHN∗02] HUMPHREYS G., HOUSTON M., NG R.,
FRANK R., AHERN S., KIRCHNER P. D., KLOSOWSKI

J. T.: Chromium: a stream-processing framework for
interactive rendering on clusters. InSIGGRAPH ’02:
Proceedings of the 29th annual conference on Com-
puter graphics and interactive techniques(New York, NY,
USA, 2002), ACM Press, pp. 693–702.

[jug] http://www.vrjuggler.org.

[osg] http://www.opensg.net.

[pla] http://www.planetarium-hamburg.de.

[SWNH03] STAADT O. G., WALKER J., NUBER C.,
HAMANN B.: A survey and performance analysis of soft-
ware platforms for interactive cluster-based multi-screen
rendering. InEGVE ’03: Proceedings of the workshop on
Virtual environments 2003(New York, NY, USA, 2003),
ACM Press, pp. 261–270.

[tro] http://www.trolltech.de.

[vrc] http://chromium.sourceforge.net/doc/llnlcopy.html.


