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Abstract. In many cases it is reasonable to augment general unsu-
pervised learning by additional algorithmic structures. Kohonens self-
organzing map is a typical example for such kinds of approaches. Here a
2D mesh is superimposed on pure unsupervised learning to extract topo-
logical relationships from the training data. In this work, we propose
generalizing the idea of application-focused modification of ideal, unsu-
pervised learning by the development of the smart growing cells (SGC)
based on Fritzke’s growing cells structures (GCS). We substantiate this
idea by presenting an algorithm which solves the well-known problem of
surface reconstruction based on 3D point clouds and which outperforms
the most classical approaches concerning quality and robustness.

Keywords: Neural networks, unsupervised learning, self-organization,
growing cell structures, surface reconstruction.

1 Introduction

The idea of developing the smart growing cells approach is driven by the need
of an algorithm for robust surface reconstruction from 3D point sample clouds.

The demand for efficient high quality reconstruction algorithms has grown
significantly in the last decade, since the usage of 3D point scans has widely been
spread into new application areas. These include geometric modeling to supple-
ment interactive creation of virtual scenes, registering landscapes for navigation
devices, tracking of persons or objects in virtual reality applications, medicine,
or reverse engineering.

3D points, retrieved by laser scanners or stereo cameras, introduce two vital
questions. First, how can one recognize a topology of the originating 2D surfaces
just from independent 3D sample points and without any other information from
the sampled objects? Second, for further processing, how is it possible to project
this topological information on a data structure like a triangle mesh — meeting
given constraints concerning mesh quality and size?

Although this issue has intensely been tackled since the early eighties [1] a
general concept that addresses all the problems of surface reconstruction has
not been determined up to now. Noise contained in the sample data, anisotropic
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point densities, holes and discontinuities like edges, and finally, handling vast
amounts of sampling data are still a big challenge.
Previous work. The issue of surface reconstruction is a major field in computer
graphics. There are numerous approaches with different algorithmic concepts.
In [6] and [12] an implicit surface is created from point clouds which then is
triangulated by the marching cubes approach. [2] and [14] reduce a delaunay
tetrahedralization of a point cloud until the model is carved out. Approaches
like [16] or [7] utilize techniques based on the Bayes’ theorem.

In the area of artificial neural networks a famous work is [13]. They propose
the Self Organizing Map (SOM) which iteratively adapts its internal structure
— a 2D mesh — to the distribution of a set of samples and enables clustering or
dimensionality reduction of the sample data. While a SOM has a fixed topology,
the growing cells structures concept [3, 4] allows the network for dynamically
fitting its size to the sample data complexity. SOM and GCS are suitable for
processing and representing vector data like point samples on surfaces. [5] uses
a SOM and [18] and [20] a GCS for the purpose of surface reconstruction. Fur-
ther improvements are made by [8] where constant Laplacian smoothing [17] of
surfaces is introduced, and in [9] the curvature described by the input sample
distribution is taken to control mesh density. In [11] the GCS reconstruction
process is further enhanced in order to account for more complex topologies.
[10] use several meshes of the same model for a mesh optimization process, and
[19] present a concept for combining common deterministic approaches and the
advantages of the GCS approach.

In the following, we outline the basis of our approach — the growing cells
structures — and then derive our idea of the smart growing cells, which matches
the specific requirements of reconstruction. Afterwards, an analysis is compiled
discussing mesh quality and performance of our approach, and finally, we close
with a summary and a list of future options of this work.

2 Reconstruction with Smart Growing Cells

Classical growing cells approaches for reconstruction tasks are based on using
the internal structure of the network as a triangulation of the object described by
a set of surface sample points. A 2D GCS with 3D cells is trained by 3D sample
points. Finally, the cells lie on the object surface which the 3D points represent.
The network structure — a set of 2D simplices (triangles) — is directly taken
as triangulation of the underlying 3D object. The reason for using a GCS for
reconstruction are its obvious advantages compared to deterministic approaches.

– They can robustly handle arbitrary sample set sizes and distributions which
is important in case of billions of unstructured points.

– They are capable of reducing noise and ply discontinuities in the input data.
– They are capable of adaption — it is not required to regard all points of the

sample set on the whole. Incrementally retrieved or stored samples can be
used for retrain without starting the triangulation process from scratch.
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Place k reference vectors ci ∈ Rn, i ∈ {0..k − 1} randomly in input space.

repeat

Chose sample sj ∈ Rn randomly from the input set.

Find reference vector cb closest to sj (“best matching” or “winning unit”).

Move cb into the direction of sj according to a certain strength εbm, like
cnew

b = cold
b (1− εbm) + sjεbm.

Decrease εbm.

until εbm ≤ certain threshold ε0.

Fig. 1. The general unsupervised learning rule.

– They guarantee to theoretically find the best solution possible. Thus, ap-
proximation accuracy and mesh quality are automatically maximized.

Nevertheless, these advantages partly clash with the application of reconstruc-
tion. On the one hand, discontinuities are often desired (for example, in case of
edges or very small structures on object surfaces). On the other hand, smoothing
often destroys important aspects of the model under consideration (for example,
if holes are patched, if separate parts of the underlying objects melt into one ob-
ject, or if the object has a very complex, detailed structure). In such cases, GCS
tend to generalize which mostly lets vanish visually important features which
the human is sensitized to.

The presented smart growing cells approach accounts for these application-
focused issues and emphasizes that modification of the general learning task in
the classical GCS is suitable for many novel application fields.

2.1 Unsupervised Learning and Growing Cells Structures

General unsupervised learning is very similar to k-means clustering [15] which
is capable of placing k n-dimensional reference vectors in a set of n-dimensional
input samples such that they may be regarded as means of those samples which
lie in the n-dimensional Voronoi volume of the reference vectors. Unsupervised
learning is based on iteratively adapting reference vectors by comparing them
to the n-dimensional input samples set, described with the algorithm in Fig. 1.
Surface reconstruction with pure unsupervised learning would place a set of
reference vectors on the object but does not determine information about the
underlying surface topology, which leads to the Kohonen Self Organizing Map.

The Kohonen self organizing map is based on reference vectors which now are
connected through a regular 2D mesh. The general unsupervised learning rule
is extended to account for the direct neighborhood of a best matching unit with
the loop from Fig. 2.
Insertion into the general unsupervised learning algorithm (after moving of cb)
in Fig. 1 leads to the phenomenon that the reference vertices now are moved by



IV

for all cnb ∈ neigborhood of cb do

Move cnb in the direction of sj according to a certain strength εnb, like
cnew

nb = cold
nb (1− εnb) + sjεnb.

Decrease εnb.

end for

Fig. 2. Accounting for the cell topology by introducing the neighborhood of a winning
unit in the general training from Fig. 1.

accounting for the regular 2D mesh topology of the SOM. Training a plane-like
sample set leads to an adaption of the SOM grid to this implicit plane — the
sample topology is recognized and finally represented by the SOM mesh.

Nevertheless, the mesh size of a SOM is fixed and cannot adjust to the sample
structure complexity. The growing cells structures overcome this drawback.

The Growing cells structures — to a certain degree — may be seen as SOM which
additionally are capable of growing and shrinking according to the problem under
consideration which is defined by the sample distribution. This mechanism is
based on a so called resource term contained in every reference vector and which
— in the original approach — is a simple counter. It counts how often a certain
reference vector has been detected being a best matching unit. A big counter
value signalizes the requirement for insertion of new reference vectors.

With a GCS one could train a sample set lying on a certain object surface and
the network structure would fit the object surface at a certain approximation
error. The problem is that in reconstruction tasks sample distributions are often
not uniform. The represented surfaces usually contain discontinuities like sharp
edges and holes, and the objects to be reconstructed are not that simple like a
plane or a tetrahedron. The latter usually are chosen as initial networks and can
hardly adapt to complex topologies, since only objects which are homeomorphic
the start object can be represented satisfactorily.

Thus, general unsupervised learning must evolve to a kind of constrained
unsupervised learning which detects and adapts to certain structures which the
sample set implicitly contains.

2.2 Smart Growing Cells

Let’s have a “biological view” on a network of neural cells. Here, growing cells
would expose a typical unicellular organism — all cells are identical, they possess
the same abilities.

Now, smart growing cells break this limitation, like it happens in “real world”.
During training they change their capabilities according to the tasks they will
have to fulfill and which is implicitly determined by the training input — in
case of the SGC, the underlying sample distribution. This changes the abilities
of the general unsupervised neural network significantly. In contrast to common
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repeat

for j = 1 to kdel do
for i = 1 to kins do

Select sample s from point cloud randomly, find closest neural vertex and
move it together with neighbor vertices towards s.

Increase signal counter at s (the resource term mentioned above) and
decrease the signal counters of all other vertices.

end for

Find best performing neural vertex (with highest signal counter value) and
add new vertex at this position (see Fig. 4).

end for

Find worst performing neural vertices, delete them and collapse regarding
edges (see Fig. 4).

until certain limit like approximation error, or number of vertices is reached.

Fig. 3. Classical growing cells structures algorithm.

GCS networks where the cell behavior is limited to rules that concern Euclidian
distance only, the behavior of an SGC network can precisely be modelled but
without breaking the favorable, iterative, unsupervised characteristics of the
GCS training rules.

The SGC basic structure is identical to general GCS, i.e., there are n-dimen-
sional cells which — from now on — are termed neural vertices connected by
links through an m-dimensional topology. Let n = 3 since neural vertices are
directly taken as vertices of the triangulation mesh and m = 2 since we aim at
2D surfaces to be reconstructed.
The main training loop is outlined in Fig. 3. Here kdel and kins are simple counter
parameters defined below (see section 2.3). Movements of vertices and their
neighbors slightly differ from the classical SOM. Again, there are two parameters
for the learning rates, εbm for the winner and εnb for its neighbors, but these
are not decreased during learning since vertex connections automatically become
smaller together with the learning rates. For drawing the neighboring vertices,
a smoothing process like described in [8] and [17] is applied, which replaces the
classical movement, and which makes the adaption of the topology more robust.

As initial network, usually a tetrahedron or a plane with random vertices
is suitable. Two operations enable the network to grow and shrink — “vertex
split” and “edge collapse”.

The vertex split operation adds three edges, two faces, and a new neural vertex.
The longest edge at the neural vertex with the highest resource term is split and
a new vertex is added in the middle. The signal counter value is equally spread
between the two vertices (see Fig. 4).
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Fig. 4. Neural vertex split op-
eration (read from left to right)
to increase mesh granularity lo-
cally, and edge collapse (read
from right to left) to shrink mesh
locally.

Edge collapse removes all neural vertices with resource terms below a certain
threshold rmin together with three edges and two connected faces (see Fig. 4).
The determination of the edge to be removed is driven by connectivity irregu-
larities as proposed in [8].

It follows the adaption of the cell behavior driven by the application needs of
surface reconstruction. It leads to our proposal of lifting cell capabilities above
that of general unsupervised learning described in the following paragraphs.

A) Cell Weeding. Deleting neural vertices which are not part of a sound un-
derlying mesh structure is the most important new training rule of the SGC
approach. It is essential for giving the network the chance of adapting to any
topology despite of its initial topology (overcoming the homomorphic restric-
tion). Before the edge collapse operation is applied at a vertex, it will be tested
if the vertex is contained in a degenerated mesh region (definition follows below).
If so, an aggressive cut out of the vertex and its surrounding vertices is started.

It has been shown that degeneration of a part of a mesh serves as perfect
indicator for a mesh topology which does not fit the underlying sample struc-
ture correctly. For example, consider a region where sample densities equal zero.
Although vertices are not directly drawn into it by training adjustment, their
neighbors may be moved there through their mesh connections. Due to their
resource terms, these vertices will be deleted by edge collapse operations, but
their links remain and mistakenly represent the existence of some topology. In
this case, the structure of the links is degenerated, i.e., it usually shows a sur-
passing number of edges with acute-angled1 vertices (see Fig. 5).

The reason for terming this deletion ”aggressive” are the triggering properties
which are quite easy to match — suspicious neural vertices will be cut out early.

A Criterion for degenerated mesh regions is already proposed in [11] where a
large area of a triangle is taken as sign for a degenerated mesh structure. But
it has been shown that this criterion warns very late. Also, anisotropic sample
densities are mistakenly interpreted as degenerated mesh regions. Our proposal
is a combination of vertex valence2, triangle quality, and quality of neighboring
1 A triangle is termed acute-angled if the ratio of its area and the area which is spanned

by a second equilateral triangle built from the longest edge of the first lies below a
certain threshold εacute.

2 Vertex valence is the number of connected vertices.
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Fig. 5. Statue’s bottom is
not represented by sam-
ples. On the right, the
acute-angled triangles ex-
pose a degenerated mesh
region.

vertices. If all of the following conditions hold, deleting of the mesh structure at
that vertex is triggered.

1. Vertex valence rises above a certain threshold ndegvalence.
2. Vertex is connected to at least ndegacute acute-angled triangles.
3. Vertex has more than ndegnb neighbors for which conditions (1) or (2) hold.

The latter condition says that deletion is only started if at least one or two
neighbors have the same inconsistencies in their local mesh structure. This is
reasonable since single degenerated vertices do not necessarily expose a problem
but may arise by accident.

Curing boundaries after weeding is needed, since, after an aggressive extinction of
a neural vertex and its surrounding faces has happened, usually a boundary will
be left which may consist of unfavorable mesh structure elements. Curing finds
these structures along the boundary and patches them discriminating between
four cases, described in the following.

i) The Spike. A boundary vertex with a valence of 2 (see left part of Fig. 6)
is termed a spike. This type of vertex is very unlikely to support a correct
reconstruction process since it will be adjusted to an acute-angled triangle after
few iteration steps. A spike must be deleted completely.

Curing a “spike” Cut out of a “nasty vertex”.

Fig. 6. Two types of unwanted vertices and their extinction.
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Cut out of “needle eye” Curing of a “bridge”

Fig. 7. Two types of unwanted connections between separate topologies.

ii) The Nasty Vertex. A nasty vertex is a neural vertex with at least nnastyacute

acute-angled triangles and/or triangles with a valence greater than nnastyval (see
Fig. 6). It is suspected to be part of a degenerated mesh region and is deleted.

iii) The Needle Eye. A needle eye is a neural vertex that is connected to at least
two boundaries (see Fig. 7, on the left). At these locations the mesh does not
have a valid mesh structure. To delete a needle eye, all groups of connected faces
are determined — the group with the most faces survives, all others are deleted.

iv) The Bridge. A bridge is very likely to be part of a degenerated mesh region. A
mesh with a hole consisting of three vertices would soon be closed by a coalescing
process (see section 2.2). This is not allowed if exactly one of the edges of this
hole would additionally be connected to a face (which we term a “bridge”, see
Fig. 7) since an invalid edge with three faces would arise. The entire bridge
structure is deleted and the hole will be closed by generating a new face.

B) Coalescing Cells. Like a mesh can be split through deletion of vertices, it
must also be possible to merge two mesh boundaries during training. For that, a
coalescing test is accomplished each time a vertex at a mesh boundary is moved.

The coalescing test determines if two boundaries are likely to be connected to one
coherent area. For that, a sphere is created with the following parameters. Given
the neigboring boundary vertices v1 and v2 of cb, then let c = 1/2(v1 + v2). A
boundary normal nc is calculated as the average of all vectors originating at c
and ending at neighbors of cb, where v1 and v2 are not taken into account. The
boundary normal can be seen as a direction pointing to the opposite side of the
boundary. We define a sphere with the center at c + ncr with radius r as the
average length of the edges at cb.

The coalescing condition at two boundaries hold, i.e., merging of the bound-
aries containing cb and q on the opposite side happens, if

– q is contained in the defined sphere, and
– scalar product of the boundary normals at cb and q is negative.

The Coalescing process is required since after detecting the neural vertex q to
be connected with cb, the according faces must be created starting with one edge
from cb to q. There are two cases which have to be considered.
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Fig. 8. Coalescing process at a mesh corner. On the left, the search process of a coa-
lescing candidate. In the middle, one edge is created, on the right, the only face capable
of being added is the corner face.

i) Corner. A corner of the same boundary arises when cb an q have one neighbor-
ing vertex in common (see Fig. 8). A triangle of the three participating vertices
is created.

ii) Long side. Here, two boundaries appear to be separated. After determining
the new edge, there are four possibilities for insertion of a new face containing
the edge (see second picture in Fig. 9). The triangle with edge lengths which
vary fewest is taken in our approach (see third picture in Fig. 9) since it is the
triangle with the best features concerning triangle quality. Finally, to avoid a
needle eye, a further triangle must be added — again, the face with the greatest
edge similarity is taken (see fourth picture in Fig. 9).

C) Roughness Adaption. Up to now, the SGC are able to approximate an
arbitrary sample set by a 2D mesh. What remains is an efficient local adaption
of the mesh density in a way that areas with a strong curvature are modeled by a
finer mesh resolution (see Fig. 10). This also relieves the influence of the sample
density on the mesh granularity making the SGC less vulnerable to sampling
artefacts like holes or regions which are not sampled with a uniform distribution.

Each time a vertex is adapted by a new sample the estimated normal nk at a
neural vertex vk is calculated by the average of the normals at the surrounding

Fig. 9. Coalescing of two separate boundaries. In the second picture, the edge is de-
termined, in the third, the triangle with smallest variance of edge lengths is added, in
the fourth, another triangle must be added to avoid a needle eye.
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Fig. 10. Roughness adaption cor-
relates surface curvature with
mesh density, details of the model
are accentuated.

faces. The curvature ck ∈ R at a vertex is determined by

ck = 1− 1
|Nk|

∑
∀n∈Nk

nk · n (1)

with the set Nk containing the normals of the neighboring neural vertices of vk.
Each time a neural vertex is selected as winner, its curvature value is calculated
and a global curvature value c is adjusted. Finally, the curvature dependent
resource term rk at vk is adapted through rnew

k = rold
k +∆rk, and

∆rk =
{

1, if (ck < c+ σrk
)

[ck/(c+ σrk
)] (1− rmin) + rmin else, (2)

with the deviation σrk
of the resource term rk, and a constant resource rmin

that guarantees that the mesh does not completely vanish at plane regions with
a very small curvature.

D) Discontinuity Cells. A sampled model that exposes discontinuities like
edges is difficult to be approximated by the neural network mesh. Discontinuities
are smoothed out since the network tries to create a surface over them. This
might be acceptable in many application areas since the approximation error is
fairly small, but this effect is unfavorable in computer graphics since it is clearly
visible. And even worse: edges are quite common in real world scenarios.

Therefore, we propose discontinuity neural vertices which, first, are only capa-
ble of moving in the direction of an object edge to represent them more properly,
and second, the smoothing process is not applied to them.

Recognizing those vertices is accomplished as follows. The curvature values
of those neighbors which have a distance of two connections from the vertex
(the “second ring” of neighbors) are determined. Then the average δring of the
squared differences of consecutive curvature values on the ring is calculated.

If a curvature value clearly deviates from the average curvature value, it is
assumed being a discontinuity vertex if the average of the neighbors’ (second



XI

Fig. 11. A dent (left picture) on a
sharp edge is solved (right picture) by
an edge swap operation. Finally, con-
nections of discontinuity vertices model
object edges

ring) curvature gradient differs to a certain amount. Thus, a vertex vk is defined
a discontinuity vertex if

(ck > 2σck
) ∧ (∀c ∈ Ck : δring > 4σ2

ck
) (3)

with Ck the set of curvature values of the second ring of neighbors.
For approximating the edge normal the average of the normals of two of the

neighboring vertices of vk are taken, either those with the highest curvature
value, or those which are already marked as discontinuity vertex. Finally, the
normal is mirrored if the edge angle lies above 180◦ indicated by the average of
the surrounding vertex normals; in the first case it points in the direction of vk.

An Edge swap operation is applied if two connected discontinuity vertices grow
into an edge, they nicely represent this edge by a triangle edge. But if the line
is interrupted by a non-discontinuity vertex, a dent arises since this vertex is
not placed on the edge. In this case an edge swap process is proposed which
minimizes this effect.

Each time a discontinuity vertex is moved towards a sample, the need for an
edge swap operation will be determined by collecting the three consecutive faces
with the most differing face normals. In case of a dent, the face in the middle is
assumed to be the one which is misplaced and an edge swap operation is applied
(see Fig. 11). Then, if the difference of the normals is now lower than before,
edge swap is accepted, if not, the former structure is held.

Fig. 12. Discontinuity vertices focus on edges. Edge swap operations let mesh edges
map to object edges.
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Fig. 13. Mesh boundary due to
the missing bottom of the statue
is represented exactly by bound-
ary cells.

Edge swap results in models where finally edges are represented by mesh
boundaries (see Fig. 12).

E) Boundary Cells Similar to discontinuity vertices which are capable of
moving to object edges, boundary vertices are able to move to the outer border
of a surface (see Fig. 13). They are recognized by being part of a triangle edge
which is connected to one face only.

Then, these vertices are moved only into the direction of the boundary normal
like described in section 2.2 for avoiding vertices just lying in the average of the
surrounding samples but directly match the surface boundaries at their locations.

2.3 Results

For the full algorithm of this approach see the pseudocode in Fig. 14. To keep
it comprehensive, the outermost loop of the algorithm is neglected, and vertex
split and edge collapse operations are triggered by counters.

Parameters which have been proven to be reliable for almost all sample sets
we took for reconstruction are εbm = 0.1, εnb = 0.08, rmin = 0.3, εacute = 0.5,
ndegacute = 4, kins = 100, kdel = 5, ndegnb = 1, nnastyacute = 4, nnastyval = 3.

The following results have been produced on a DellR©Precision M6400 Note-
book with IntelR©Core 2 Extreme Quad Core QX9300 (2.53GHz, 1066MHz,
12MB) processor with 8GB 1066 MHz DDR3 Dual Channel RAM. The algo-
rithm is not parallelized.

Visual results are exposed in Fig. 16. All pictures are drawn from an SGC
mesh. Most models stem from the Stanford 3D Scanning Repository. Besides
visual results, reconstruction with SGC comes up with impressive numbers com-
pared to classical approaches, which are listed in the table in Fig. 15. It can be
seen that mesh quality, i.e. the percentage of perfect triangles in the mesh lies
at 96% at average. This is an outstanding but expected result, when using an
approach from the field of unsupervised learning, since this guarantees an ideal
representation of the underlying training sample distribution.
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Adjust samples regarding roughness.

Calculate average curvature and deviations.

Recognize and sign discontinuity and curvature cells.

for all Boundary cells do
if ∃ coalescing candidate then

Melt boundary.
for all Weeding candidates do

Weeding process.
end for

end if
end for

if Edge collapse operation triggered then
Collapse edge.
for all Weeding candidates do

Weeding process
end for

end if

if Vertex split operation triggered then
Split vertex.

end if

Fig. 14. Outline of the
complete SGC algo-
rithm.

Further, the distance (RMS/object size) between samples and mesh surface
is negligible low — far below 1% of the object size at average. This is even more
pleasant, since usually the problem at edges generate big error terms. Also the
computing times needed are very short, just few minutes in common cases.

All those measurements are far better than those from classical approaches,
in so far as these are revealed in the specific papers. Our algorithm works very
robustly. There are nearly no outliers visible in the mesh.

3 Conclusions

We presented smart growing cells as an expansion of general unsupervised learn-
ing. The novel core skill of a smart growing cell is the added intelligence — cells
may not only adapt to the sample distribution but can also use application-
focused aspects of the data they operate on. This extension is consistently in-
jected into the standard unsupervised learning rule avoiding the extinction of its
beneficial properties.

As a proof of concept a surface reconstruction algorithm was presented that
overcomes the well-known problems of approaches that use the standard growing
cells structures concept. Features like creases and corners are preserved, the tri-
angle density relates to the curvature and arbitrary topologies are reconstructed.
Our approach even outperforms classical surface reconstruction approaches. For
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Samples 36K 438K 544K 14,028K 5,000K 511K 38K 346K
Vertices 30K 100K 260K 320K 500K 10K 5K 346K

Time [m:s] 0:39 2:47 9:15 12:17 21:5 0:11 0:6 0:6
Quality 95.6 95.5 93.1 98.5 95.9 99.8 99 98.3

RMS/Size 4.7e-5 3.3e-5 1.7e-5 1.3e-5 2.7e-5 6.6e-5 15e-5 0.7e-5

Fig. 15. Results with sample sets from the Stanford 3D Scanning Repository. “Quality”
means percentage of triangles which hold the Delaunay criterion. RMS/Size is the root
of the squared distances between original point samples and the triangle mesh, divided
by the diameter of the sample set.

evaluation purposes, several sample sets were used which provide different re-
construction challenges (see table in Fig. 15). The average deviation of the mesh
from the sample points is 2 · 10−3 % compared to the diameter of the object
under consideration, and about 96% of the triangles fulfil the Delaunay criterion
for triangle quality.

A further important feature of SGC is their robustness. The network is able
to handle arbitrary topologies and billions of samples easily. It recognizes and
solves discontinuities in the sample data and it is capable of adapting to varying
sample distributions without the need for training from the scratch.

The network is able to match arbitrary surface structures like single ob-
jects, landscapes, or even separate objects with very complex topologies. The
final triangulation is directly taken from the network structure. No additional
triangulation or cleaning processes are required.

Future work. We propose three directions for ongoing work on SGC. First,
currently, the additional intelligence of a cell is purely defined on heuristics. A
great improvement would be to use a separate neural network which detects and
realizes cell behavior automatically. Second, in the area of surface reconstruction
smart growing cells produced great results which is a proof of concept. To estab-
lish the flexibility of smart growing cells new applications cases will be realized.
Third, the movement of a cell is independent from other cells. This offers great
opportunities concerning the parallelisation of the presented approach. With a
decent speed up real time application should be in reach.
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Fig. 16. Upper lines: mesh training stages with number of vertices, lower lines, assorted
pictures of reconstructed models.


