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Abstract: A common way of creating a virtual world is scanning a real world environment

by a stereo camera set or by a 3D laser scanner. It results in a 3D point cloud which requires

a surface reconstruction to generate a triangulated mesh or an implicit surface for following

tasks like rendering.

In this paper we focus on challenges concerning the surface reconstruction of arbitrary

complex environments in contrast to compact, single objects. These types of reconstruc-

tions, that most approaches are not capable of, are vital for Virtual Reality applications.

We suggest the Smart Growing Cells (SGC) approach satisfying these requirements and

demonstrate this by comparison and discussion of classical reconstruction algorithms.
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1 Introduction

The advantages of virtual towards real world environments are numerous. A virtual environ-

ment can be explored independently from time and place. If proper precautions are taken,

a virtual environment is timeless and can be studied even if the real world source has been

lost. Aspects of a virtual environment can be analyzed and measured easily. Modifications

can be done and tested with little effort. These are vital processes in fields like architecture,

archaeology and in industrial context. Also in the computer games and movie industry sur-

face reconstruction becomes more and more important. Other applications are crime scene

investigation or computer vision for robot navigation.

Reconstruction of an objects surface just from 3D points is surprisingly difficult. Even

human need a huge “database” of known objects and related perceived images stored in a

complex neural network which is trained over years to achieve this task — and although it

works we do not have any idea of how this is being accomplished.

To technically retrieve a three dimensional environment or just one object, a stereo

camera set or a 3D laser scanner is used resulting in a 3D point cloud. With this point cloud

as a representation of a surface questions concerning lighting, volume, insight or outsight

or collisions can not sufficiently be answered. The cloud of zero-dimensional points does

not contain any information about the underlying surface as such. Additional assumptions

must be drawn from general properties of general surfaces, and since the number of possible



Figure 1: On the left, points originating from a connected but unknown line. In the middle,

one assumption for a connected line which is valid but which is not likely if we assume an

underlying “usual surface”. The geometry on the right seems to be a better approximation

since common rules for points on surfaces are applied to create it.

surfaces is not limited, the challenge of surface reconstruction can also be described by finding

the most likely surface (see Fig. 1) which matches the point set at its best.

In this paper we concentrate on reconstruction approaches which are suitable for scan-

ning large environments in contrast to methods which are only capable of registering single

separate, closed objects. We suggest the SGC meshing approach [AB10b] for this task since

from our point of view it is the most effective way to robustly retrieve virtual from real

environments. This paper focuses on the abilities of arbitrary surface reconstruction algo-

rithms for the reconstruction of real environments and presents a detailed analysis of the

capabilities of the SGC algorithm specifically towards this task and points out the meaning

of certain qualities in that context.

In the following we give an overview of classical methods and discuss the SGC meshing

approach for real-time or Virtual Reality applications.

2 The Challenge of Meshing Large Scenes

Scanning scenes which are not limited to few convex objects like many reconstruction ap-

proaches require expose several challenges.

• Multiple scans are needed and the distance of the surface to the scanner varies. Both

facts cause anisotropic point densities of the resulting point cloud. Holes can usually

not be avoided. I.e., the roof of a house is often missing in the point cloud.

• Outliers arising from objects which are moving through the scene during the scanning

process must be recognized as such.

• Vegetation moved by the wind does not have a well defined surface. Lawn for example

just produces a thick layer of noise in a scan.



Figure 2: Examples of ambiguous surface reconstruktion cases. These six pictures show a

point set twice, which has reconstructed with two different surface topologies.

• In contrast to compact closed objects, large arbitrary areas do not define a reasonable

surface orientation. The relations “inside” and “outside” can not clearly be determined

which is required in many reconstruction algorithms

• Generally, huge point sets are needed to retrieve large areas since there is more informa-

tion than usual from the underlying object to be processed. Reconstruction algorithms

which are capable of handling billions of 3D points are nearly not known.

• Objects are not necessarily connected, instead there often exist many separate objects

to be reconstructed which the most available approaches are not able to accomplish.

See Fig. 2 for some examples how surfaces can be misinterpreted due to sampling artefacts.

2.1 Previous Approaches Incapable of Environmental Surface Reconstruction

A huge class of algorithms build a Delaunay tetrahedralization in a first step like [Boi84,

EM92, KSO04] or a Voronoi diagram like [ACK01, DG06] of the point cloud. These algo-

rithms have several disadvantages. First, they need to consider all points at once, second

they produce an interpolation of the input points such that the mesh can not be scaled in

size, third, they are very sensitive to anisotropic point densities and noise and, fourth, most

of them are based on the hypothesis that the point cloud comprise a volume.

Some of these drawbacks can be attenuated, but nevertheless this family of algorithms is

not adequate for environment reconstruction. One of the most sophisticated implicit surface

reconstruction algorithm is based on the Poisson equation [KBH06]. It shows very robust

behavior when dealing with noise and outliers. Since it optimizes a function that defines an

insight and outsight of the surface, it is strictly limited to reconstruction of closed surfaces

and this makes it inadequate for scanning environmental objects.



Another class of algorithms uses radial basis functions (RBF) to represent a surface. In

these approaches RBF are placed consecutively inside the point cloud until some closeness

criterion is satisfied [Mur91, CBC+01]. The resulting function is an implicit surface. These

algorithm have advantages when processing noise and are able to close holes in a surface

[TZCO09]. Nevertheless, they produce only closed surfaces.

Another group of algorithms is based on a so called “balloon model”. These alter an

initial mesh until it fills out the space comprised by the point cloud [SLS+06, CM95]. These

approaches are favorable in processing noise and are capable of automatically sealing holes

in the point cloud — but still, open meshes cannot be compiled by them.

2.2 Previous Approaches Capable of Environment Reconstruction

A well-known reconstruction algorithm is the one by [HDD+92]. Here every point is repre-

sented by a tangent plane. The tangent plane normal is calculated as the eigenvector of the

covariance matrix of a defined neighborhood of k points which all together define an implicit

surface. The plane pieces which are computed from the local k-neighborhood are indepen-

dent from each other, i.e., there is no global information of the surface available, and such,

strong variations between neighboring faces are possible. The quality of the resulting mesh

can be enhanced by mesh optimization [HDD+93] but nevertheless the problem from above

cannot be solved since even orthogonal neighboring faces are accepted as correct topology.

In [Lev03] the moving least squares (MLS) approach is adapted to surface reconstruction.

The surface is constructed as a continuous function that is locally adapted to minimize the

least squares distances between the input points. The size of the neighborhood used for the

calculation determines the smoothness of the surface. The method can handle noise very

efficiently but exposes problems in case of outliers. [FCOS05] does not create a mesh but a

piecewise smooth surface and the whole surface is a collection of smooth surface pieces. For

rendering purposes a final polygonalization is required.

The problem with these approaches is that they might smooth out details since the

processes do not adapt to local point cloud conditions. Heterogeneous noise level settings

can not be set adequately for all regions of the environment.

Another problem is that the mentioned continuous functions are calculated on a local

level — if the local resolution is inappropriate for a certain structure the reconstructed

mesh may contain twists in the surface. A twist means that the surface orientation is not

homogeneous, such that differently oriented surface areas are directly next to one another.

3 Smart Growing Cells Meshing

Smart growing cells (SGC) is a novel unsupervised learning technique from the field of

artificial neural networks (ANN). Our proposed triangulation algorithm is derived from the

SGC. In the following we describe its development in consecutive steps starting from general

unsupervised learning.



A) Unsupervised Learning

Unsupervised learning is very similar to k-means clustering [Mac67] which is capable of

placing k n-dimensional reference vectors in a set of n-dimensional input samples such that

they are means of those samples which lie in the n-dimensional Voronoi volume of the

reference vectors. Adaption of reference vectors is accomplished by randomly presenting

single n-dimensional samples from the input sample set and moving the closest reference

vector towards these samples.

B) Self Organizing Map

The Self Organizing Map (SOM) [Koh82] can be seen as general unsupervised learning where

reference vectors are additionally connected to each other. The learning rule from above

is extended to account for the neighborhood of the closest reference vectors. The SOM

iteratively adapts its internal structure — the 2D mesh — to the distribution of samples.

Thus, besides clustering and dimensionality reduction it enables mapping of the sample input

for instance to a 2D space by creating a map of reference vectors.

C) Growing Cells Structures

To a certain degree Growing Cells Structures (GCS) [Fri93, Fri95] may be seen as SOM

which additionally is capable of growing and shrinking according to the problem under

consideration which is defined by the sample distribution. This mechanism is based on a

so called resource term contained in every reference vector and which — in the original

approach — is a simple counter. It counts the reference vector being the closest vector to a

certain training sample. Finally a large counter value signalizes the requirement for insertion

of new reference vectors.

D) Smart Growing Cells

Individual behavior of the cells of the GCS concept is introduced by the Smart growing cells.

It therefore can adapt to certain phenomena within the network defined by application-

focused rules. Whereas cell behaviour defined in a GCS network is limited to rules that

concern Euclidian distance only, the behaviour of a smart growing cells can precisely be

modeled without any restrictions concerning the underlying data.

3.1 The Smart Growing Cells Approach in Detail

SGC is derived from GCS by adaptations necessary to realize surface reconstruction. These

modifications are discussed in the following.

To stabilize the surface movement, Laplace smoothing [Tau95] is applied to the neighbor-

hood of the closest reference vector to avoid degenerated triangles within the surface [IJS03].

The process starts with a simple structure like a tetrahedron — with repeated refinement

steps it adapts to the structure which the sample set represents (see Fig. 3).



Figure 3: Different training states during reconstruction with the SGC meshing approach.

3.1.1 Vertex Split

The neural vertex carrying the highest resource term is split since it has been selected

by many samples and thus, creating more vertices at this location, should represent the

underlying sample distribution more adequately. A vertex split operation adds three edges,

two faces and a new neural vertex which is placed in the middle of the longest edge at the

vertex to be split. The resource term is equally spread between the vertices (see Fig. 4).

3.1.2 Edge Collapse

Neural vertices with resource terms below a certain threshold rmin are removed together with

three edges and two connected faces in a way that every neuron is an end point of ideally

six edges [IJS03].

3.1.3 Smart Growing Cells Features

With these modifications the GCS concept is turned into a surface reconstruction algorithm

with one important feature missing — modification of the homeomorphism of the network

Figure 4: On the left, the edge collapse, on the right, the vertex split operation



Figure 5: Statue with missing samples at the bottom (see point cloud on the left) and

its reconstruction in the second picture. The third picture shows the “degenerated”mesh

elements which are detected and destroyed during the SGC meshing approach resulting in a

cleanly defined cut out at the empty space (see fourth picture).

structure. Thus, a mechanism for weeding and coalescing of cells is introduced in [AB10a]

enabling cutting out unsuitable mesh pieces and rejoining separated elements (see Fig. 5).

3.2 Environment Reconstruction with Smart Growing Cells

The SGC meshing approach has a lot of advantages that specially qualify it for the recon-

struction of environments.

• The algorithm directly produces a triangulated mesh as a result — no polygonalization

is needed for the rendering process.

• With the SGC weeding and coalescing processes any mesh surface (homeomorphism)

can by achieved.

• SGC Meshing is based on an iterative refinement process. Any produced surface is

based on a preceeding surface topology guiding creation of a new one. The orientation

of a surface area is based on all previous refinement levels. Even structures with

complex orientations which cannot be derived from the local surface are reconstructed

correctly (see Fig. 6). Nevertheless, surface twists on a global level are a remaining

problem. A surface twists on a global level means that huge surface areas are oriented

differently. This results from mistakes in the early stages of the reconstruction process,

that can currently not be solved in the further refinement process.

• In the learning process all vertices are constantly moved to the median point of its

sample subspaces. Since all vertices are situated in such a median they generally are

distributed harmonically and they are connected forming a Delaunay triangulation.

This is favorable for further processing. Methods like texture and bump mapping can

be used to reduce the complexity of the rendering process of a scene, while its visual

quality stays nearly the same (see Fig. 7). This can be very important in case of large

environments and was realized only as a separate postprocess up to now [YLL+09].



Figure 6: The protruding element of the wall can easily cause twists of the surface, which is

avoided through iterative refinement within the SGC process.

• Since vertices represent sample medians, the surfaces in noisy region also are averages

of the samples in that area and therefore will be adequately smooth. As shown in

section 2, this is a very important property in a reconstruction application.

• Problems of anisotropic point densities are easily diluted since additional mesh elements

are created independently of the certain underlying sample distribution but instead

depending on the network quality (see Fig. 8).

• The approach is capable of handling arbitrary sized sample sets since it never has to see

the sample set on the whole. Instead samples are drawn incrementally from the sample

set, and at every state a valid solution in terms of a triangulation mesh is available.

This is a vital advantage compared to the most classical reconstruction methods.

Figure 7: On the left, a high resolution mesh, in the middle, the same mesh with only 1/6

of its original triangles, on the right, again the smaller mesh but with using a bump map

drawn from the high-res mesh.



Figure 8: Distinct point densities (exposed on the left) simply lead to varying triangle sizes

(see picture on the right) and do not influence accuracy or triangle quality significantly.

• Although training rules are surprisingly simple, they can achieve complex tasks. Thus,

the specification of the problem under consideration is very easy — and in many cases

the only possible since it frees from defining vast amounts of case discriminations and

it delivers a valid algorithm in cases where algorithms simply have not been found

yet. For example, see Fig. 9 — here, a variety of different heterogeneous object

structures are recognized robustly which can hardly be specified from a global view on

an all-embracing algorithm.

• Reconstruction with a neural network is very flexible. The training can be stopped

and resumed at any time. If a mesh is not accurate enough the training can simply

be extended, even by incrementally taking new samples from the scanned object. An

environment can be constructed at the same time the point data is being retrieved.

Representations at different training levels can also be utilized in applications where

several levels of detail of the scanned object are needed

4 Results

Although nowadays there exits a huge amount of technical devices to retrieve a three dimen-

sional representation of an environment, the required subsequent reconstruction process is

Figure 9: Without any previous knowledge or explicit rules the trees in the scanned envi-

ronment were nicely been reconstructed.



still very challenging. Only a small margin of existing reconstruction techniques are capable

of performing this task automatically. Common problems are anisotropic point densities,

holes, outliers and noise. A meshing algorithm needs to find a consistent orientation, handle

vast amounts of data, unconnected surface areas, and arbitrary complex homeomorphisms

of the underlying topologies.

SGC meshing, in our opinion, is a big step towards an algorithm which solves the most of

theses problems and makes retrieval of arbitrary environments robust. Thus, SGC meshing

is an adequate tool for real time and Virtual Reality applications.

The approach is able to create open meshes, produces very stable results, is standing up to

noise, has nearly no problems with anisotropic point densities, and can handle point clouds

consisting of billions of points. The usage is very straightforward, rule sets for matching

different reconstruction tasks can easily be created and modified, and the process is very

robust concerning complex sample topologies (see Fig. 10). There is no need for any type

of post-processing like polygonalization or re-meshing. On the downside, surface twists are

the only challenge which has not been solved sufficiently yet. Fortunately they arise very

rarely and can mostly be fixed by restarting the algorithm at a different random seed.

Figure 10: Example for environment reconstruction with the SGC meshing approach. The

model is created from a point cloud of 9 millions of points. The resulting mesh contains

about the same amount of triangles. Calculation took four hours.



5 Future Work

Texturing in the context of environment reconstruction is very important (see Fig. 7)

— huge meshes can easily be reconstructed, but nevertheless, they can not efficiently be

rendered. Automatic texturing of generated meshes will be a great issue in forthcoming

work since it is required for interactive applications with huge data sets.

Another contribute to the reconstruction of environments could be a hybrid approach

which combines the strengths of SGC meshing and the MLS method since, in the authors’

option, these both seem to be the most promising algorithms for this task.

A great weakness of the SGC meshing approach are global twists of the resulting meshes.

The authors are confident to solve this problem in future work.
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