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ABSTRACT

A method to display planetary atmospheres as seen from the inside is proposed. We developed 
this  approach  to  improve  the  perceived  realism in  virtual  reality  applications  with  dynamic 
outdoor scenes. The algorithm uses the underlying physical model with as few simplifications as 
possible while producing visually convincing results in real time. Based on the effects of light 
scattering, the sky color is calculated entirely on the graphics processing unit by means of a 
vertex shader. Computationally costly terms, especially optical depth, are accurately computed 
without using  precalculation. Thus, all relevant parameters (such as viewer height, atmosphere 
density and planet/atmosphere radius) can be adjusted interactively with immediate feedback. 
Furthermore,  by  sampling  the  light  path  non-equidistantly,  a  way of  efficiently  solving  the 
scattering integral is introduced. The proposed method copes with every time of day situation for 
planets in single-solar systems and can be easily integrated and extended.
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1   INTRODUCTION

Realistic image synthesis is a major field of research in computer graphics. Especially the effect 
of light interacting with materials is focussed on. In this paper, we present a fast,  physically 
accurate real time approach to simulate light passing through an atmosphere. A realistic, dynamic 
sky simulation - even if in the background - can help to create convincing overall pictures, not to 
mention  its  contribution to  the credibility of  sky-oriented scenes  (such as  flight  simulators). 
Although sophisticated methods for rendering realistic atmospheric effects exist, they all suffer 
from the  same  drawbacks:  All  previous  approaches  rely  on  precomputed  lookup-tables  and 
specially  tuned  algorithms,  making  it  hard  to  integrate  them  in  existing  frameworks. 
Additionally, precalculated or hard-coded atmospheric conditions limit the algorithm's flexibility. 
Our idea is to develop a physically based approach for atmosphere rendering, which is flexible 



and easy to implement, yet providing interactive frame rates. In the following, we explain basic 
terms and concepts.

Many planets  are enveloped in a mixture of gases which is called atmosphere.  This shell  is 
bound to the surface due to gravity. The Earth's atmosphere essentially consists of oxygen (78 %) 
and nitrogen (21 %), the combination known as air.  Another important element is the ozone 
layer,  which  absorbs  ultraviolet  rays.  By  providing  oxygen,  protecting  us  from  dangerous 
radiation and regulating temperature our atmosphere establishes vital conditions.
With increasing altitude, the density of air falls exponentially. 5 km above sea level on Earth, it 
has decreased by 50 %, at an altitude of 12 km the drop is roughly 75 %. Although the transition 
between our atmosphere and space is fluent, the commonly used boundary lies at a height of 100 
km and is called Kármán line.

While composition and size of atmosphere can vary strongly from planet to planet, sky color 
calculation - based upon physical laws - always follows the same rules. When a light wave enters 
the atmosphere, it is likely to collide with molecules and aerosols and change its direction. Some 
light is absorbed (for example by ozone or dust particles), some is scattered or reflected.
The interaction between radiation and small particles was described by Lord Rayleigh in 1871. 
Rayleigh found out that the amount of scattering is inversely proportional to the fourth power of 
the light's wavelength. Light with shorter wavelengths is scattered much more than light with 
longer wavelengths. This is the main reason why our sky appears blue at day time: Because of its 
high frequency, blue is scattered more than green and red light. Although violet has an even 
shorter wavelength, the sky color is blue mainly because our eyes are less sensitive to violet. 
However, bigger particles (such as water vapour or dust particles) show a different scattering 
behaviour which was specified by Gustav Mie in 1908. Here, no strong wavelength dependency 
exists. For every color the scattering amount is nearly the same. Also, light is scattered most 
effectively into the forward direction. Due to aerosols and Mie scattering we see a white glare 
around the sun.

As discussed, our sky appears blue during day time because of atmospheric scattering - blue is 
spreaded over the sky more than any other color. Yet, approaching the horizon, sky color changes 
to a pale white. A viewing path through the atmosphere towards the horizon is much longer than 
a  viewing  path  towards  the  zenith;  accordingly  light  has  to  pass  through  more  air.  With 
increasing travel distance, more light is added and at the same time removed to a viewing path 
by scattering. As it collides with much more air molecules on a path close to the horizon, the 
inscattered blue light is scattered out again, whitening the overall color. The measurement of a 
path's transparency which accounts for this complex scattering behaviour is called optical depth.
The same phenomenon causes the impressive orange-red color of earthly sunrise/sunset. Because 
of the large optical depth, blue is removed from the white light coming directly from the sun, 
leaving yellow and red fractions.
The sky colors mentioned above primarily apply to Earth-like atmospheres. Generally, skies can 
take any color depending on atmospheric composition and incoming light properties. The sky on 



Mars for instance is brownish red due to strongly scattering and absorbing dust. Still, as said 
initially the steps for computing sky color are identical for every atmospheric composition.

2   RAYLEIGH SCATTERING

In 1871, John William Strutt, third Baron Rayleigh, published his theory on scattering of light by 
small  particles  [Rayleigh1871].  His  model  is  valid  for  molecules smaller  than 0.1 times the 
wavelength.  Assuming  particles  to  be  isotropic  (which  is  adequate  for  most  atmospheric 
molecules), the total scattering coefficient β is given by

β  λ=8π3 n2−12

3Nλ 4  (2.1)

where  n  is  the  refractive  index  of  air,  N is  the  molecular  density  and  λ  is  the  wavelength 
[Preetham2003][Nishita1993].  The  total  scattering  coefficient  specifies  the  amount  of  light 
removed  by  a  scattering  event.  The  most  important  fact  about  this  equation  is  the  strong 
dependency on the wavelength.
The Rayleigh phase function describes the scattering strength as to a certain direction:

β θ = 3
16π

1cos2θ  (2.2)

with θ being the angle between the viewing path and the light direction.

Figure 2: Simplified atmospheric scattering 
at day time. Close to the horizon, the 
inscattered blue is removed again by 
scattering, which results in a pale white.
At viewing angles near the zenith the optical 
depth is small enough for blue to dominate 
the overall color.

Figure 1: Simplified atmospheric scattering at 
sunrise/sunset. On a horizontal viewing ray, 
blue fractions of the white sunlight are 
attenuated by outscattering over the distance. 
This is the reason why the sky is reddened at 
the horizon.



It is remarkable that the distribution has a symmetric shape and is strongest in the forward and 
backward direction. The product between the Rayleigh phase function and the total scattering 
coefficient  results  in  the  angular  scattering  coefficient,  which  describes  the  amount  of  light 
scattered in a specific direction:

β  λ ,θ=π 2n2−12

2Nλ 4 1cos2θ  (2.3)

By integrating this equation over the total solid angle 4π, the total scattering coefficient (2.1) can 
be derived.

As explained in section 1, Rayleigh scattering is responsible for our blue sky.

3   MIE SCATTERING

In the early 20th century, physicist Gustav Mie developed a generalization of Rayleigh's theory, 
which is applicable to particles of any size [Mie1908]. However, as it is more complex, in real 
time  applications  Mie  scattering  is  only  used  for  aerosols  which  are  too  big  for  Rayleigh 
scattering. Mie's total scattering coefficient is given by

β  λ=0.434cπ  2π
λ


v−2

K (3.1)

where c is the concentration factor and correlates with the turbidity, v is the Judge's exponent and 
is commonly set to 4 for sky model and K is a factor that varies slightly with the wavelength 
[Preetham2003]. Note the weak wavelength dependency compared to Rayleigh scattering.
Because of its high complexity, the Mie phase function is usually approximated by applying the 
Henyey-Greenstein equation [Henyey1941]:

βHG θ =
1−g2

4π 1−2gcosθg2
3
2

(3.2)

with  g  defining  the  directionality.  The  function  essentially  describes  an  ellipse  and  has  no 
mathematical  relation  to  the  original  Mie  phase  function.  Still,  it  can  show  the  same 

Figure 3: Rayleigh phase function. The light direction is 
parallel to the x-axis.



characteristics as Mie's function, which is mainly a strong focus on the forward direction (or 
backward, depending on g).

Because of aerosols in the atmosphere, according to Mie sun light is scattered with a strong 
directionality, which produces a white glare around the sun (see section 1). Mie scattering is also 
responsible for the greyish white sky on a misty or cloudy day – due to the high amount of 
vapour, which is an effective Mie scatterer, all colors are scattered nearly equally.

4   OPTICAL DEPTH

Optical depth is a measurement of opacity. It describes the extinction of light passing through a 
medium. The amount of light added to a path is defined as

dI=−κρI 0 ds (4.1)

where κ is the opacity coefficient which specifies the absorption or scattering efficiency, ρ is the 
materials density,  I0 is the initial light intensity and ds is the travelling distance.  To find the 

Figure 4: Mie phase function. 
The left graph describes the scattering phase for particles with a radius of 10 nm. The function's 
shape resembles the shape of the Rayleigh phase function. In the second graph, the particle 
radius is 125 nm, in the third it is 50000 nm. With increasing particle size, the function shape 
becomes more acuate and develops an antenna like lobe in the forward direction.

Figure 5: Henyey-Greenstein phase function. 
In the top graph, the factor g is 0.8, in the lower it is 
0.9. Note the stronger directionality in the bottom 
picture.



remaining intensity of a light path, it is necessary to integrate over the entire distance s:

∫ dI
I 0
=∫

0

s

−κρds

<=> ln I
I 0
=−κρ∫

0

s

ds=−κρs <=>
I
I 0
=e−κρs

<=> I=I 0e−κρs= I 0 e−τ (4.2)

The variable τ is called optical depth and determines how much light is removed from a path.

5   SCATTERING EQUATION

Let  us consider  the mathematical  formula calculating single  scattering along a  viewing path 
[Nielsen2003][Preetham2003][Nishita1993].

I  λ = ∫
Pv

Pa

I sun λ e−τ λ , ss in λ , s , θ  e−τ  λ , sv ds

= I sunλ  ∫
P v

P a

in λ , s ,θ  e−τ λ ,sv −τ λ , ss ds (5.1)

Light coming from the sun is attenuated along its way through the atmosphere to the scattering 
point P. Therefore, the initial sun light intensity is multiplied by the extinction factor for the 
light's path ss. τ is the optical depth (see equation (4.2)) and is defined as

Figure 6: Schematic illustration of a scattering event in the atmosphere



τλ , s=βR λ ∫
0

s

ρR l dl βM  λ∫
0

s

ρM l dl (5.2)

where βR λ and βM λ are the total scattering coefficients for Rayleigh respectively Mie 
scattering (see equations (2.1) and (3.1)),  ρR l  is the molecular density and ρM l  is the 
density of aerosols. In a nutshell, τ sums up the outscattered light at every point of a path.
The residual intensity is scattered at P into the viewer's direction by this function:

in λ , s , θ =βR λ βRθ  ρR s βM λ βM θ  ρM  s (5.3)

with  βR λ β Rθ   and βM  λ β M θ being the angular scattering coefficient for Rayleigh 
and Mie scattering and ρR s  and ρM  s being the density of Rayleigh and Mie scatterers.
This inscattered light is again attenuated on its way to the viewer sv, so it is multiplied by another 
extinction factor.

As light is scattered at every point of the viewing path Pv Pa  (with Pa being the intersection 
point  of  the  viewing  ray  with  the  atmosphere  boundary),  to  compute  the  total  intensity 
integration along the path is necessary. Also, to cover the full spectrum of visible light, another 
integration over all visible colors must be taken:

I=∫
λ low

λ high

I λ (5.4)

where typically λlow lies at 380 nm and λhigh of 750 nm.

Because the final equation contains a double (or even triple) nested integral, it can not be solved 
analytically; a numerical solution is required.

The calculation method presented above only takes single scattering into account. In reality, light 
is scattered more than once in the atmosphere, producing very complex circumstances. In figure 
6, second order scattering is illustrated by incoming light from s'1 and s'2. To compute second 
order  scattering  at  a  point  on the  viewing path,  integration  over  the  total  solid  angle  4π  is 
required, because inscattered light from all possible directions must be considered.

I ' λ = ∫
P v

P a

e−τ λ ,sv ∫
0

4π

I λ  in λ , s , θ '  ds '  ds (5.5)

Furthermore,  light  reflected  by  the  planet's  surface  plays  a  role  in  sky  light  computation. 
Although the effects of multiple scattering are not negligible in some situations, they are ignored 



in this work for simplicity and performance reasons.

6   IMPLEMENTATION

Full single scattering (based on Nishita's equations) is implemented on the GPU using a vertex 
shader. This approach has several advantages: Expensive computations like the e- or the square 
root  function  are  performed  very  efficiently  on  graphics  hardware.  Also,  the  CPU  is  left 
unaffected  by  costly  scattering  calculations.  In  addition,  on  older  graphics  hardware  the 
probability  of  creating  a  bottleneck  is  low,  since  here  the  vertex  shader  unit  is  commonly 
underutilized and idle.
The input sky mesh can be any geometry centered at the origin; in practice it will be a dome (for 
optimal performance we advise an adaptive dome mesh which is highly tesselated around the 
sun). Instead of covering the entire spectrum of colors (see  [Irwin1996]), three representative 
samples are taken for red, green and blue light, which the final RGB-color is composed of. Also, 
the sun direction is considered parallel for all points of the atmosphere.

For numerically solving the scattering integral a special midpoint rule – similar to an approach 
by [Nishita1993] -  is applied in order to reduce sample count. To understand its efficiency, the 
distribution  of  atmospheric  particles  and  thus  atmospheric  density  must  be  understood. 
Atmospheric pressure at a given height is calculated by

ρheight =ρ0 e−height / scaleHeight  (6.1)

where ρ0 is the pressure at ground level. At the scale height, atmospheric pressure has decreased 
by the factor e.
Usually the atmospheric density is highest around the point of view, decreasing rapidly along the 
viewing ray. The area near the point of view is hence most significant for the final scattering 
result; here, a precise computation is necessary. To benefit from this observation, sampling points 
are concentrated at the beginning of the viewing ray instead of being distributed equidistantly. 
This is achieved by exponentiating the sampling point parameter.
Every path through the atmosphere is integrated that way, because very often it will start  in 
thicker regions of the atmosphere, with density getting exponentially thinner along the path.

Figure 7: Efficient numerical solution of 1/ex integrals. 
In the right graph the function area is approximated 
very accurately with few samples.

Figure 8: Atmospheric density 
distribution. On almost every view 

path towards the sky the density 
decreases quickly.



The actual implementation of the proposed method is presented in simplified pseudo-code and 
explained piecewisely in the following.

CalculateColor(viewDir)
{

viewPos = vector3(0.0f, planetRadius + viewHeight, 0.0f);
d = GetAtmosphereIntersection(viewPos, view) - viewPos; 
if (!IntersectsPlanet(viewPos, viewDir))
{

for (i = 0 to samples - 1)
{

a = (i / samples)^3;
b = ((i + 1) / samples)^3;
scatteringPointA = viewPos + a * d;
scatteringPoint = viewPos + (a + (b - a) * 0.5f) * d;
scatteringPointB = viewPos + b * d;
if (!IntersectsPlanet(scatteringPoint, -sunDir))
{

deltaX = length( scatteringPointB - scatteringPointA);
finalColor.r += deltaX * GetScatteredIntensity(redWaveLength,

viewPos, view, scatteringPoint);
// repeat for finalColor.g and finalColor.b

}
}     
finalColor *= sunColor * absorptionColor;
finalColor = 1.0f - exp(-exposure * finalColor);
return vector4(finalColor, (finalColor.r + finalColor.g + finalColor.b)^
atmosphereTransparency);

}
else

return BLACK;
}

[1] Solves the single scattering integral (see equation (5.1)). Sky color is computed for a specific 
viewing direction (which is the normalized input vertex).  Before this function is executed,  a 
frustum clipping test is performed in the shader to avoid unnecessary calculations.

[2] Check if the sky is visible in viewing direction.

[3] Numerically integrate the scattering function over the viewing path. As described, march the 
viewing path non-equidistantly.  Thus, only about 50 % of the normally required samples are 
sufficient. Skip the calculation if the sample point lies in the planet's shadow. Finally, multiply 
the  solved  integral  by the  initial  sun  intensity  and an  absorption  coefficient.  Absorption  by 
particles is not considered in a physically correct way because it is often negligible. Instead a 
constant  absorption  on  every  light  path  is  assumed.  Then  the  sky  brightness  curve  is 
exponentially adjusted to capture the high range of brightness and match human vision. Also, 
depending on the sky color's intensity transparency is defined, so the mesh can easily be blended 
with a star background.

  2

  3

  1



GetScatteredIntensity(lambda, viewPos, viewDir, scatteringPoint)
{

inScattering = atmosphereTurbidity * (rayleighAngularCoefficient * moleculeDensity + 
mieAngularCoefficient * aerosolDensity);

for (i = 0 to densitySamples - 1)
{

a = (i / densitySamples)^2;
b = ((i + 1) / densitySamples)^2;

densitySampleA = viewPos + a * viewIntegrationPath;
densitySample = scatteringPoint + (a + (b - a) * 0.5f) * viewIntegrationPath;
densitySampleB = viewPos + b * viewIntegrationPath;
opticalLength = atmosphereTurbidity * length(densitySampleB - 

densitySampleA);
viewOpticalDepth += opticalLength * (rayleighCoefficient * moleculeDensity +

mieCoefficient * aerosolDensity;

densitySampleA = viewPos + a * sunIntegrationPath;
densitySample = scatteringPoint + (a + (b - a) * 0.5f) * sunIntegrationPath;
densitySampleB = viewPos + b * sunIntegrationPath;
opticalLength = atmosphereTurbidity * length(densitySampleB - 

densitySampleA);
sunOpticalDepth += opticalLength * (rayleighCoefficient * moleculeDensity + 

mieCoefficient * aerosolDensity);
}
outScattering = exp(-viewOpticalDepth – sunOpticalDepth);
return inScattering * outScattering;

}

[1] Calculates the intensity arriving at viewPos after a single scattering event at scatteringPoint.

[2] Compute inscattering (see equation (5.3)). All physical terms are reduced to their essential 
characteristics. The use of actual units and constants is dispensable, because the final intensity 
value  must  be  mapped  to  a  displayable  range  anyway.  Our  modified  terms  are  listed  and 
explained in table 1.

[3] Solve view and sun optical depth integrals to get outscattering and ultimately attenuation (see 
equations (4.2), (5.1), (5.2)). Again, the sampling point distance is incremental.

  1

  2

  3

Description Term Equation Comment

Particle density ρ0e −height / scaleHeight (6.1) -

Rayleigh phase 
function

10.5cosine2 (2.2) Slightly adjusted for weaker directionality.

Total Rayleigh 
coefficient

λR E D
4 / λ4 (2.1) Factor concentrating on the wavelength dependency, all 

other units and constants have been eliminated.

Mie phase 
function

1−g2

1−2gcosineg21.5

(3.2) No division by 4π.

Total Mie 
coefficient

λR E D
2 / λ2 (3.1) See total Rayleigh coefficient.

Table 1:  Modified physical terms



7   RESULTS

We have shown that our approach produces visually satisfying results especially for clear Earth-
like atmospheres at interactive frame-rates. Using three or four integration samples (which is 
utterly sufficient thanks to our efficient way of integration), we hardly noticed any performance 
loss compared to scenes with static atmospheric environments. Even with very accurate settings 
(five samples for the scattering integral and also five samples for the optical depth integrals), we 
still  achieved 60 frames per second in our test environment (Dual Core AMD Opteron, 2.19 
GHz, 2 GB RAM, NVIDIA Quadro FX 4400 at 1600x1200). The implementation on graphics 
hardware has proven to be extremely efficient - the GPU program was 80-90 times faster than 
the same algorithm implemented on the CPU. 
Also, tests with probands in our VR environment have shown that the application of a realistic 
and dynamic model of the atmosphere increases the overall acceptance and thus the degree of 
immersion. 

8   DISCUSSION

With  physically  correct  image  synthesis  becoming  more  and  more  important,  atmospheric 
scattering  has  been  discussed  copiously over  the  last  few years.  Many previous  approaches 
concentrate  on  Earth's  atmosphere,  and  considerable  algorithmic  optimizations  can  be 
implemented when a relatively static environment like the Earth sky is  to  be computed.  All 
proposed  real  time  approaches  use  precomputation  and  thus  are  limited  with  respect  to 
flexibility. Although previous approaches are applicable in many cases, there are applications 
which require a highly dynamic variability of atmospheric conditions in real time, such as flight/
space simulators, planet rendering engines, computer games, semi-scientific projects and virtual 
reality  applications.  Since  parameters  like  viewer  height,  atmospheric  pollution  and  particle 
density distributions are adjustable at run time without additional effort, the proposed method is 
well  suited  for  these  areas  of  application.  Furthermore  we  have  proven  that  a  direct 
implementation  of  the  full  scattering  equation  is  possible  and  performant,  rebutting  the 
argumentation  of  previous  papers  claiming  that  precomputation  is  inevitable  for  real  time 
applications.

However, our approach merely provides the basis for a universal atmosphere rendering system. 
Sky  color  currently  is  not  calculated  globally  (which  would  involve  multiple  scattering), 
prohibiting effects like twilight or completely overcast skies which are based upon higher order 
scattering and self illumination. Moreover, several local illumination features are not modelled 
realistically  yet.  The  planet  Mars  for  example  has  an  extremely thin  atmosphere;  yet,  light 
scattering  is  higher  compared  to  our  atmosphere  due  to  the  dust  being  present  in  Martian 
atmosphere. Red-brown iron oxides in the atmosphere also absorb much blue light. Within our 
approach, custom particles with individual scattering or absorption behaviour are not included so 
far;  the  atmosphere  composition  is  broken down to  one  type  of  molecules  and one type  of 
aerosols. In the proposed method, atmospheric density and scattering amount depend on each 



other,  requiring  molecular  density  to  be  increased  in  order  to  achieve  stronger  scattering. 
Consequently,  although  the  Martian  and  many  other  planet's  atmospheres  can  be  visually 
simulated with our method, the input values need to be tweaked, leaving the path of physical 
correctness.

Many of these drawbacks can be eliminated as soon as high-performance lookup tables in vertex 
programs will  be available,  which  is  currently not  the  case with  vertex texture  fetch.  Some 
expensive computations like the e-function, the root function or Rayleigh and Mie terms can be 
precalculated without granting overall flexibility, offering more frame time to spend on complex 
calculations. Nevertheless, section 7 shows that our system already provides good results.

9   SUMMARY

The presented method offers  a  good balance  between visual  and physical  realism at  a  high 
rendering performance while providing a high amount of dynamic and flexibility. The approach 
of non-equidistantly sampling light paths and the possibilities of modern graphics hardware help 
to efficiently implement the full single scattering equation with very little compromises, which 
has not been done in real time so far. Our technique is very easy to integrate by simply applying 
the shader to a geometry. Although it can not capture all scattering effects present in nature, the 
proposed method realistically simulates the most significant aspects of atmospheric scattering 
and is already applicable in many scenarios.

10  FUTURE WORK

Since the developed shader is easy to implement and modify, it provides the foundation for many 
enhancements. Some potential future improvements are listed below:

– develop a realistic cloud and weather model
– provide a realistic night sky including stars and moon(s)
– properly consider absorbing particles in the atmosphere and account for absorption in the 

scattering integral (parallel to molecules and aerosols)
– include multiple scattering and self illumination
– use lookup tables (as discussed in section 8)
– implement aerial perspective
– integrate real high dynamic range rendering
– allow the view point to be located outside of the atmosphere
– define more than one light source
– enhance the visual impression by rendering lens flares etc. (see figure 9, 13, 14)



11  PICTURES

Figure 9: Earth sky at day time Figure 10: Sky dome from the outside at sunset

Figure 11: Mars-like atmosphere Figure 12: Sunrise at 12 km height

Figure 13: Integration in VR environment 1

Figure 14: Integration in VR environment 2
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