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Abstract approach. Then, we discuss our extensions: first, we mod-
ify the error measureésource termto enable general ap-

A new algorithm for general robust function approxima- proximation of arbitrary goal functions, second, a method
tion by an artificial neural network is presented. The ba- for incremental resampling of the function space according
sis for this work is Fritzke's supervised growing cell struc- to the coherency and to the approximation accuracy of the
tures approach which combines supervised and unsuperfunction values is presented. We prove the results by means
vised learning. It is extended by the capability of resam- of several example experiments.
pling the function under examination automatically, and by
the definition of a new error measure which enables an ac-

o : : 2. Supervised growing cell structures
curate approximation of arbitrary goal functions.

2.1. Overview

1. Introduction An SGCS network contains two layers. The first is in-

stantiated by a set of-dimensionakadial basis functions

In many applications, instead of calculating a function’s (RBF) [5], calledcells the second accumulates each of the
exact value, itis sufficient to accept a rough, fast, and cheapoutputactivationsof the RBFs to form then-dimensional
approximation, at a first glance, and then to decide whetheroutput vector of the network (see figure 1). It realizes a
to increase accuracy by investing more computational re-function f : R* — R™ which serves as an approximation
sources. In most of these cases, a functiomzdelis trained  of a goal functionf : R* — R™. Samples are drawn from
by single test samples calculated from the function under f, which the network is trained with. At each state of the
examination — the goal function. learning process the network generalizes the fungtiover

The approximation model should be efficient in terms of its input space to a certain accuracy.
accounting for coherency in the goal function, i.e., its in-  An important feature of SGCS is the combination of su-
ternal representation should focus on highly varying loca- pervised and unsupervised learning through different learn-
tions. The same holds for the selection of training samples.ing strategies for the first and the second layers. The net-
Instead of drawing these arbitrarily, a resampling strategywork is trained by presenting input/output paig () €
should be able to direct attention to locations of low ap- (R™ x R™). The unsupervised part is accomplished by mov-
proximation accuracy. ing the cells of the first layer according to the inguo find

Fritzke’s supervised growing cell structuresgorithm centers of clusters in the input data. Concurrently, the sec-
(SGCS) [2] can be seen as an alternative to the classicabnd layer is adapted to deliver the intended output
Kohonen self-organizing ma®OM) [4]. Both are able to Moving the RBFs accounts for an additional neighbor-
adapt their internal structure to the coherency in the inputhood relation between the single cells. It creates a topolog-
space ¢lustering. SGCS are additionally suitable for be- ical structure of predefined dimensionalityon the train-
ing trained by supervision. Due to the combination of su- ing data. In the two-dimensional case, the final network
pervised and unsupervised learning, it delivers the basis forof RBFs depicts anapof reference cells, similar to Koho-
the development of thecremental supervised growing cell nen’s self-organizing feature map. Generally, the network
structureg(ISGCS) presented in this work. consists of a mesh of predefined basic elements, such as tri-

In the following, we roughly explain the standard SGCS angles, quadrilaterals, tetrahedrons, etc., according to the
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Figure 1. An example SGCS network.

underlyingk.
Each cell of the network containg@source ternwhich

cell and approximate it by, = I, ~ \F.|, with [.. is the
mean length of théedgeqthe lateral connections) emanat-
ing from a cellc. The length of an edge between two cells
1 andj is defined as the Euclidian distance between their
synaptic vectord, ; = ||w; — ;||

The supervised layer of the network is defined by one
output weight vector for each celf, € R™,¢c € A. The
output of the networks : R* — R™, according to an input
¢ is calculated as

k(&) = ZﬁcMC(g)
ceEA
with
= 2
M (6) = exp(~ 1=l

M., is the output of a celt (theactivation). ¢. is assigned
to

holds particular information about the samples presented to ch'e define the neighborhodi, of a cellc as the set of

the network. It delivers local information about the train-

cells which are directly connected by lateral connections de-

ing accuracy and is utilized to insert or to delete cells from termining thek-dimensional topology.

the network. The SGCS grows at locations with a high re-

source term and shrinks at places where the resource ternp 3 Training

signalizes a sufficient approximation accuracy.

In the following we formally explain the general algo-
rithm limited to the features crucial for this work. For more
information see [2].

2.2. Network definition

The initial topology of the network is a set of celld,
connected in &-dimensional structure by lateral connec-
tions. The only basic element iskadimensional simplex,
i.e., fork = 2, this is a triangle. During a self-organizing
process, new cells are added4an a way that, at each time
step, this basic structure is maintained.

Every cellc has attached am-dimensional synaptic vec-
tor @, which can be seen as the positioncoih the input
vector spac&’. A mappinge; : V — A is defined as

¢117 : V_)A7(€ € V) = (¢u7(€) € A);

[@ae) = €Il = min [|&, — ¢, (@)
with « the set of all synaptic vectoig,,c € A. ¢z(&)
is called thewinning or the best matching uni(BMU) for
an input vectot. The BMU is the cell with the smallest
distance tc.
By equation (1) is partitioned into a number of regions
F. (¢ € A), each consisting of locations with the common
nearest synaptic vectaf.. This is known as/oronoi tes-
sellation and the regions are denoted bfgronoi regions
[2]. We definef. the k-dimensional Voronoi volume of a

If an I/O pair(&, ¢) is presented to the network for train-
ing, the setad and ¢ with 7 = {v,,¢c € A} are modi-
fied such thati adapts to the input distribution by moving
cells inn-space, and the vectoisare modified in order to
approach the intended output valge With the notation
X = X 4+ AX, and considering as a specific BMU,
b as one of the direct neighbors @fandc as one arbitrary
cell of the networkA4, the adaption of the cell weights for
each iteration cycle is done as follows.

JANTI (€ — W), for the BMU s,
AWy = En(f—u_f{,), VbENs,
Av, = n(C— k(&) M., VeceA,

with ¢, €,, andn the learning parameters for the input
weights of the BMU, for its neighbors, and for the output
weights, respectively.

Every cell contains aesource termr. which tracks a
value for the actual approximation accuracy. For the classi-
cal GCS approach, the resource term of a specificcasl|
proposed in two fashions. First, counter-like as an approx-
imation of the local sample distribution presented during a
certain time, second, as some mean value of the error which
is generated by the succeeding samples. The first type is
used for realizing pure clustering, the second for supervised
learning.

The resource term for supervised training is defined as
the difference between the output of the network (&)
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Figure 2. (a) is the goal function to be approximated, (b-d) e =~ xample network topologies trained with
the classical definition of the resource term, (e) the result from the new resource term definition.

and the intended outpgt For one iteration step,. of each has been proven as to be very robust and we will refer to it,
cell of the whole network is modified as follows. only.
We redefine the resource term by two componenis.
s andr.,,.. Consider the cels as BMU. ., is incre-
AT ¢ =<lI", forthe BMUs, (2)  mented by the error which the network delivers compared
At = —a- -7 VYee A 3) to the actuak. 7., counts the samples which fall into
that Voronoi region,
« is a predefined “forgetting” parameter which weighs

the influence of more recent iteration steps more strongly. A _ 212
After a certain numbeA of iteration cycles, the celt Terrs = [IC= (I,

with the largest. is selected fromd, and insertion of a new ATepts = 1.

g’illnlsc done in the middle of the longest edge originating Concurrently for all cellg € A, the terms
In case of insertion or deletion of cells, the network struc-

ture must be kept homogeneous (only simplices of dimen- ATente = —0Tentes

sion k), and the resource terms and weights must be mod- Ar - a7

ified in order to account for the modified Voronoi regions.

For implementation details see [2]. are added, which provide the weighted mean value over
So far we have described the standard SGCS approacha certain time period. The final resource value is calculated

Our extensions are explained in the following. For clari- according to

fication, the next section is accompanied by practical ex-

amples, and, to ease visualization, we concentrate on two- T. = Terme | |F.|, Vc € A. 4)
dimensional functions, although the presented algorithms Tent,c
are not bounded ta, £k = 2. If necessary, we give hints ] ) ) .

inal definition of the resource term from equations (2, 3).
The goal function is shown in figure (2a), drawn as grey-

3. Incremental supervised growing cell struc- scale picture. The input space is projected on the x- and y-

tures axis of the image. The brightness of a pixel is proportional
to the function value.
3.1. A new resource term It can be observed (figures (2b-d)) that the generation of

cells is directed into regions of varying function values in
Several experiments indicated that the definitions (2, 3) order to increase approximation accuracy. Using the clas-
are not suitable for approximating arbitrary functions, since sical error definition which does not consider the Voronoi
the error mainly depends on the sample distribution, i.e., area, a high resource term is not essentially decreased, and,
the number of hits inside a specific Voronoi region. Even in the worst case, the place of generation of new cells will
our resampling strategy proposed in the next section will never leave these locations. Even in less critical cases, the

run into problems with this resource term. network structure is not well suited to represent the goal
The Voronoi volume of the cells must additionally be function adequately.
taken into account leading to a definition which looks simi-  The different results from figures (2b-d) are generated by

lar to theL,, error measure. In our experiments theerror slightly modifying the learning parameters. This also shows



the low robustness of the classical error definition. The al-

Definitions (5, 6) enable two essential predicates. First,

gorithm totally collapses, if the proposed resampling algo- an inputé lies within a critical region of a particular net-
rithm (presented in the next section) enforces a high samplework, A, if pa... (§) returns true. Second,lies outside of

distribution in regions with low approximation accuracy.

the range of the whole network if the terpy (€) returns

In contrast to that, figure (2e) shows an example networkfalse.

trained with the proposed error measure from equation (4).

of these cases — if the functioth with 6

3.2. Resampling

If a test sample¢ fed into the network exposes one
R —
{T,F},0(&) = pace. (&) V —pa(€) is true — then the in-
put space aroundlis assumed being not sufficiently repre-

As depicted in the introduction, resampling should avoid sented by the network topology, and resampling will take

selecting too many initial samples from the goal function
f in order to circumvent undersampling which happens in
two cases: first, if the shape of the goal function is more

place there.
The resampling step scans the whole input space by eval-
uatingf. At places wherd succeeds, new samples are cre-

complicated than the number of local samples can exposeated and added to the actual training sets.

(uncertainty principlg, second, the goal function generally
contains sharp boundaries which separate areas where th
input is defined from those where no function values exist.
Due to the fact that cells representing a lower sample distri-

The algorithm successively generates sets of sample 1/0
gairs, S; € R x R™ : {(&, G)}H G = f(&),i =
1,....1S;], 5 ={0,...,p—1}. pis the actual number of sam-
ple sets in the set of all sampl&s= {S;},7 =0,...,p— 1.

bution tend to be pulled into regions of a higher distribution, The initial setS; is taken fromV completely at random.
these "exterior’ locations in general are not sufficiently rep- All further sets are calculated as described. For training the

resented by the final network topology. In the following, we
call the first kindcritical regions(CR), the seconéxterior
regions(XR).

network, samples are selected from all s&tsvith equal
probability.
Finally, we need to knowyhena new resample step has

The proposed resampling algorithm selects new sampleso be triggered. Comparable to the uncertainty principle,
from the goal function to directedly increase the sample dis- we define the ratio of the number of cells and the number of

tribution at the CRs and the XRs.
Assuming that CRs can be identified through a high cell

training samples as criterion for an undersampling through
the actual amount of cells. i = |A]/|S|, with |S| =

resource value, and that XRs are _eql,J,ivaIentto the regions ofzg?;é 1S;1, rises above a certain threshald s a new set
the function space which lie “outside” of the actual network of samples is generated. The complete algorithm is outlined

expansion, we define the resampling strategy as follows.
Consider a relationr. : (¢ € A) — {T,F}, which

determines, if a celt is a critical cell (CC), i.e., if it is

located in a critical region of the function input space,

o-(c)=(1.>w-T), c€ A,

with w a threshold for being a high-resource cell and
the mean value of the resource terms of all cells. Further, we
define thesub-networlof A which consists only of critical
cells by the termi ¢,

Acc = {¢c,c € Ao (0)},

and the relation “inside of the range of a set of cells”,
p:R* = {T, F},

pa(§) = (Da(§) > ), (5)

with

Dy:R* 5 R DA(E) =Y M(§), 6)
ceEA
with a thresholdp, and the overalhetwork activation

D 4, the sum of the activations of all cells of netwotk

in figure 3.

Create initial sample set So randomly, set # sample sets p = 1.

Set the counter A, := A.

Select 4, j randomly, present (&;,(;) € S; to the net.

Adapt the cell weights according to (&;,¢;).

if \c = 0 insert a cell, set A\ := )\, else decrement ..

repeat until #cells/#samples exceeds 14 s.

add a new 1/0O set Sp41 to S, increment p.

repeat

Figure 3. The extended ISGCS algorithm.

Examples. Figure 4 shows training results for the goal
function from figure (2a), with = 2, m = 1, created using

the proposed resampling scheme. Figure (4a) is the approx-
imated function delivered by the network. A difference to
the goal function is hardly noticeable. The approximation
error is below 5% [.»).
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Figure 4. (a) is the approximation of the function from figure (2a), (b) the sample distribution gen-
erated during training by 5-10 resampling steps. Figure (d) is the network structure, and (e) the
approximation of the goal function from (c). (b) and (d) expo se the sample and the cell distributions
according to the coherency in the goal function.

Figure (4b) presents the corresponding sample distribu-denoted by the fact that the two attached cells are marked as
tion which arose after several (less than 10) resamplingfixed.
steps. It clearly marks regions in the goal function input  Generally, this scheme is valid for any dimensioiwof
space which are more difficult to approximate with a bigger the ISGCS by initially connecting groups bfneighboring
amount of samples. Even the exterior zones are resampledoundary cells with a center cell formingkadimensional
several times in order to avoid a network growing without simplex. It should be mentioned that problems may arise if
considering the function boundaries. the initial boundaries have a complicated shape. This leads
Figure (4c) shows a different goal function. Its final net- to inconsistent simplex shapes, and thus, to a lower robust-
work structure can be seen in figure (4d) and the approxima-ness of the training process.
tion in figure (4e). It can be observed that the distribution of
cells behaves the same way as the distribution of samplesgxamples. Figure 5 shows two example networks which
Sharp boundaries with low coherency of the function values are calculated by applying the complete ISGCS algorithm.

are represented by more cells than “smooth” locations. |t can clearly be observed that the networks span the whole
For completeness, we list some example parameters usetLinction range.
in the presented training tests: = 0.01, ¢, = 0.001, n = Figure (5a) and (5b) are the network structure and the ap-
0.1, =0.05,A = 300,w = 0.6, p =1, 94,5 = 0.05. proximation of the example function from figure (2a). Fig-
ures (5c¢c-e) show the results from learning the function from
3.3. Attaching cells at function boundaries figure (4c).

Consider the accurate representation of high varying

In the preceeding section, we presented a counteragennction locations by a higher amount of samples and cells.
to avoid an insufficient representation by the network ap- Difficulties in the representation of boundary regions are

proximation in exterior regions of the goal function. This MOV completely avoided (see the representation of the small

section deals with another way to account for this, based onSduare at the bottom of figures (4€) and (5e)). Even the in-
creased sample distributions at the boundaries vanish (fig-

the user’s knowledge of the function boundaries. ) >
In contrast to defining an initial network (one simplex) ure (5d)) since the network is forced to take care of these
Gregions through the fixed boundary cells.

at random, boundary cells are selected which have a fixe
position, and which are connected to one central cell. Thus,

the iteration starts with a network which spans the whole 4. Summary

function space.

For the presented two-dimensional functions, the initial ~ We have described an extension to the classical grow-
cells are placed at the corners of the rectangle defined bying cell structures approach by Fritzke [2], which enables
the goal function expanse. The training process begins withthe approximation of arbitrary goal functions by an iterative
four triangles. learning scheme.

The boundary cells take part only in the unsupervised The presented incremental supervised growing cell struc-
training of the output weight vectors. That means, they aretures (ISGCS) deliver a method which is capable of resam-
marked as fixed and do not move according to the input sam-pling the goal function under examination automatically.
ples. Cells which are inserted at boundary edges must beThis essentially reduces the amount of samples needed for
signed to behave the same way. Boundary edges are clearlgn accurate training, since the method selects samples only
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Figure 5. (a-e) show results from the complete ISGCS algorit
the goal function from figure (2a), (b) its approximation. (c
approximation of the function from figure (4c), (d) its sampl
Consider the representations at the boundaries in (e) compa
(e) and that from figure (4e)), and the reduced amount of gener

o i e)

hm. (@) is the network topology for

) is the final network structure for the

e distribution, and (e) the approximation.

red to (4e) (the square at the bottom of
ated samples (figure (d)).
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