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Abstract

Radiosity approaches — and generally, finite element methods (FEM) — are
mainly driven by a discretization of the domain under consideration which is
necessary for the numerical solution of the application specific differential or
integral equations.

This discretization can easily be accomplished in those practical problems
which “live” in more or less regular domains like, for example, a fluid in a
cylindric container, or an electrical field in outer space. But with the arising
of boundary conditions the medium under consideration is prevented from a
unique homogeneous behavior, and thus, the demand for elaborated algorithms
as well as for higher computing resources is increased.

Radiosity approaches compute the light transfer inside of virtual architec-
tural scene definitions. Here, the domain consists of arbitrary located geomet-
ric elements with sharply bounded edges and abruptly varying surface proper-
ties. They limit the virtually smooth propagation of light. Moreover, todays
claims to virtual scene descriptions like the possibility of handling several thou-
sands of single patches, dramatically increase the problem of boundaries.

This work presents an alternative way for the discretization of the environ-
ment for a radiosity finite element solution. Based on sample “rays” drawn
from the geometry, a pair of artificial neural networks (ANN) is trained and
their inner structures are interpreted as FEM meshing. Representations of the
light flow as well as the scene geometry are generated. Based on this virtual
geometry the required FEM integration operations are accomplished analyti-
cally. The network structure approaches the given geometry with the progress
of learning and delivers a close functional description of the light flow in the
virtual scene.

The Monte Carlo sampling and the simultaneously executed FEM support
each other. Thus, samples are drawn directedly by utilizing the information
derived from the internal structure of the ANN, and vice versa, an efficient
meshing of the scene results from the non-redundant distribution of samples
to which the network adjusts.

The main feature of this work is the new kind of generation of an FEM
meshing for radiosity, which is completely independent from the scene objects.
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The ANN generates its own internal representation of the geometry, and thus,
the approach is capable of detecting coherency or clusters of the underlying
light flow in an optimal way. Due to the independence from the scene definition,
initial linking is avoided and rough, fast solutions for even huge geometries are
possible. A further essential feature is the combination of sampling and the
FEM — importance sampling is driven by the light flow instead of examining
the geometry relationships only.

The work is divided into two parts. First, a new ANN algorithm is devel-
oped, which is capable of being trained to deliver a general efficient approxi-
mation model for arbitrary functions of any dimensionality. Here, emphasis is
laid on an automatic importance sampling of the underlying general goal func-
tion to enable its non-redundant examination. The approximation facility of
the resulting network is equivalent to a linear function base of Gaussian radial
basis functions (RBF) with infinite support. This work’s second part describes
how this algorithm is applied to the radiosity problem, i.e., to the approxima-
tion of the light flow and the scene geometry. A new kind of FEM model for
radiosity is developed based on the neural network (“neural meshing”).



Mathematical Notations

Notations

When writing vector notation, it is implicitly assumed that vectors are columns.
Thus, a vector x € R", written by its components would deliver (zy, z, ... z,),
although virtually, (21,2, ... 2,)  is meant.

Considering vectors y,z € R”, a matrix M € R* x R” with rows my, €
R", k =1..n, and a scalar v € R, then the multiplication of two vectors is
written z = xy = (z1y1, T2Y2, --- TnYn), and the inner product v = x -y =
> xiy;. Multiplication of a matrix and a vector is denoted z = My =

(ml Ty, mp -y, ...my - Y)

Most characters in this text are used uniquely. Besides enumeration vari-
ables like i, j, etc., or function parameters like s or ¢, one particular term
denotes the same object through the whole text, as follows.

Terms

Radiosity

fespr  bidirectional scattering distribution function (BSDF)
10) angles between received and scattered light ray and surface normals
S  point domain (surfaces) of the scene geometry

x,y points (€ R?) of the surface domain

z;,y; components of X,y
B radiosity function & — R (monochrome light phenomena assumed)

B™  radiosity function after the n** integration of the kernel operator
E emittance function S — R
P reflectance function § - R
V  visibility function & — {0,1}
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€, €;
b, b;
0, 0;

Z 2=

S

geometric term S x § — R

kernel function (p - G) of the radiosity integral equation
number of radiosity base function components

radiosity approximation & — R

approximation & — R of the radiosity emittance
operator notation of kernel K

matrix notation (€ R* x R") of integration operator X
components of K

vector (€ R™) of emittance coefficients and "™ component
vector (€ R™) of radiosity coefficients and 7™ component

vector (€ R™) of absorption coefficients (function p) and i** compo-
nent

orthonormal radiosity base function component
the dual function of N;
vector (€ R*) of all N;, i =1...n

number of segments in S

Artificial Neural Networks

n
m

a

g: gz
Ca Cz

N>

fsg

RN

sE
c~
ko
~

network input dimension (number of “units” of the 0*" layer)
network output dimension (number of units of the output layer)
number of units in a network

general input vector (sample, € R") and ™ component

general output vector (for supervised learning, € R™) and i** com-
ponent

training (goal) sample vector (€ R™)

general notation for goal functions

general notation for the approximation of a goal function
number of layers (0" layer not counted)

output dimension of the k™ layer

vector of network unit functions of the k™ layer, k =1...p

i™ component of ®*) i =1...m}
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weight matrix of all weights of a network

weight matrix (€ R™+1 x R™) between the i** and the (i +1)™
layer

the j* row (€ R™+1) of W)

the £** component of w§-i)

a set of training samples

number of samples in Q

Growing Cell Structures

topological dimension of an ISGCS

dimension of the distribution of training samples

number of hidden units

set of cells {¢; : i =1... 2} of a network

™ cell of A

network unit function (Gaussian) of the first layer, attached to ¢;

network unit function (summation) connecting the first layer and
the j* output of an ISGCS

vector notation of the sets {2, : ¢ =1...z} and {¥;: j=1..m}
standard deviation of

weight matrix (€ R" x R?) between the input and the first hidden
layer of an ISGCS

center vector (€ R™) of a cell ¢; (the i** row of W)

weight matrix (€ R* x R™) between the first hidden and the output
layer of an ISGCS

Jj™ row (€ R¥) of V

one-dimensional output of an ISGCS , ¥ : R* — R
denotes the function which searches the best matching unit
set of cells in the direct neighborhood of a cell ¢;

set of cells in the k-neighborhood of ¢; (< k jumps between a ¢; €
NF and ¢;)

Voronoi volume of a cell ¢;
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o

ACR

e

ratio for the change of the Voronoi volume of a cell ¢; when adjusting
the cell positions in the network

Voronoi volume estimation of a cell ¢;

relative signal frequency of a cell 7, i.e., frequency of being a BMU
probability density estimate of a cell ¢ being a BMU

length of an edge between cells

unsupervised resource term at the i** cell

supervised resource term at the "™ cell

extended resource term of a cell ¢; (combination of 7”S* and 7;%)
general notation for a resource term of a cell ¢;

moving strength for a BMU during unsupervised learning

moving strength for the direct neighbors of a BMU during unsu-
pervised learning

learning rate of the output layer

decreasing rate of the resource terms 7" and 7.%"

number of iterations until a new cell is inserted

number of iterations until a possible deletion of cells is tested
threshold for deletion of cells

relation determines if an input £ is located inside of a network

threshold for being inside

network activation for an input £ (accumulated activation of all
cells)

relation determines if a cell ¢; is “critical”
threshold for being a high resource cell
set of “critical cells” of a network A

relation determines if an input £ lies in a region which needs to be
resampled

resampling counter
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Growing Cell Structures and Radiosity
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£

Q
Ww;
Wy, k

d;

V, Vg

ISGCS function of the kernel approximation

Gaussian function (R* — R attached to ¢; of the kernel approxi-
mation ISGCS (“reference ray”))

vector notation of the set {2, :i=1...2}

center vector (€ R?) of the kernel network’s 7" Gaussian
k™ component of w;

standard deviation of the kernel network’s " Gaussian

output weight vector (€ R?) of the kernel ISGCS and £ compo-
nent

transfer coefficient multiplied with the emitted radiosity

matrix (€ R* x R") of the hy;

fractional transfer coefficient between two base and one kernel Gaus-
sian

approximation of A, for flat geometries

fractional transfer coefficient for two-dimensional geometries

hFL

approximation of i,

approximation of the scene definition & through the shading net-
work

number of segments in S

i (i = 1...70) segment (simplez, triangle) of S

radiosity function represented by the ISGCS shading network
size of the shading network (number of cells)

Gaussian function (R® — R attached to ¢; of the shading ISGCS
(“reference vertex”)

vector notation of the set {4; :i=1...2}

set of bases with components defined by linear combinations of the
Gaussians A;

center vector (€ R?) of the shading network’s i Gaussian
k™ component of w;

standard deviation of i** Gaussian component of the shading net-
work



u, Ug

ag

Qs

FSR;

output weight vector (€ R?) of the shading ISGCS (“one-dimen-
sional matrix”) and its £** component

normal (€ R®) of i*" base component of the shading network

“orthonormality matrix” (€ R? x R?) of the shading network Gaus-
sians

k™ line (€ R?) of A
1™ component of ay,
local surface roughness value for a shading network cell 2

blurred surface roughness value in the environment of a shading
network cell ¢

depth parameter of a shading network cell ¢

radiosity approximation after the £** integration of the kernel net-
work

i training sample calculated through B®)
inner product estimate on an assumed flat shading network
inner product estimate on the shading network

error of an approximated inner product (calculated from T and
IFI)

transfer coefficient estimate on an assumed flat shading network
transfer coefficient estimate

error estimate of an approximated transfer coefficient (calculated
from Zr and Z;y)

inner product estimate assuming Gaussians being sufficiently inside
of a shading network

inner product error estimate of the region of a Gaussian lying out-
side the shading network

error function for the symbolically calculated inner product of two
Gaussians depending on the depth of theirs position in the network

transfer coefficient estimate assuming Gaussians being sufficiently
inside of a shading network

transfer coefficient error estimate of the region of a Gaussian lying
outside the shading network

error function for the symbolically calculated transfer coefficient
depending on the depth of its position in the network
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Chapter 1

Introduction

1.1 Digital Image Synthesis

Central challenges of digital image synthesis are extraction, interpretation,
and visualization of information abstractly stored in a computer memory. In
the area of realistic image synthesis or rendering, these data mostly consist of
geometrically defined three-dimensional objects of three-dimensional artificial
worlds. They are generated, for example, in fields like architectural design or
to explore three-dimensional environments in Virtual Reality applications.

In many applications, pictures of artificial worlds show highest expressive-
ness if they are computed in a way that they look like virtual photographs of
virtual scenes as they might exist in reality. Maximizing the degree of realism
in these pictures is an important goal in the image synthesis of three-dimen-
sional environments.

Since real photographs are results of the interaction of light with its real
environment and with the camera film, rendered images are simulations of
virtual light emitted from virtual light sources into virtual environments. The
higher the accuracy of this simulation, the higher is the impression of realism
which the viewer gets, but the bigger is the amount of required computing
resources. Thus, research in digital image synthesis focuses on the development
of algorithms which calculate the flow of light with sufficient accuracy, on
the one hand, but, on the other hand, by using only a moderate amount of
computing resources.

Physics of Light Flow. A [light transport model or illumination model de-
scribes how light interacts with its environment. The model may include de-
tailed definitions of the light propagating through a medium, of its reflection
from opaque objects, and its transmittance through transparent objects. But
even the simplified view on light as an everywhere existing constant brightness
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value might be taken as a valid illumination model.

In other words, there does not exist a unique model of light. Physicists
may be interested in the effect of light particles on the aggregate of molecules
or its resonance with light waves. Opticians would only account for light rays
which propagate from one light source through different ideally transparent
media until they are absorbed by a retina, and architects may like to see their
concepts regarding the global model of the whole flow of light of an arbitrary
set, of light sources, with the phenomena of reflection and re-reflection.

The complexity of these models differ tremendously and each particular
user attempts to use the simplest model which suffices the specific application
needs.

The application of rendering with the goal of generating realistically looking
pictures commonly assumes geometrical optics. Here, geometric rays are traced
through the virtual environment. They originate at light sources and are
scattered at surfaces of objects defined by discrete geometric elements like
polygons in three-dimensional space. Pictures are drawn by calculating those
ray energies which are transported from the point space on the surfaces directly
into the virtual viewer’s eye. Vacuum is assumed in the space between objects,
and thus we are able to formulate a complete light model through the following
two phenomena.

1. The kind of scattering! a ray at a certain point on the surfaces, mostly
referred to as shading [20] is commonly described by the bidirectional
scattering distribution function (BSDF), fsspr : R* — R. The BSDF
is locally defined on each surface point, i.e., depends on local surface
properties. It delivers the ratio for the differential portion of the received
energy which is scattered into a certain sphere direction.

2. The linkage of single points in terms of the portion of differential energy
moving from one to another point — the flow of light — is formulated
through a directional integral of the energy scattered or emitted? from
the surface points into the environment.

This is one of the most comprising light transport formulations as it is
required for the challenges arising in the field of computer graphics. It is the
basis of the following simplification, called the radiosity illumination model,
but for the comprehensiveness of this work we refer to the constitutive work,
the rendering equation [30], to an outstanding comprehensive book [20], and
to a recent attempt at solving the general problem [63].

!Transparency effects are ignored in this work.
2in cases where the surface is a light source
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The following section describes the radiosity illumination model which this
work is based on. This kind of simplification of the general rendering equation
enables very short calculation times and also offers several practical advantages
described below.

1.2 The Radiosity Illumination Model

When simplifying the general light model, we must be aware of the fact that
commonly the demanded degree of realism is also reduced. The term radiosity
describes the certain class of algorithms which simplify the scattering prop-
erties on the surfaces to ideally diffuse reflection and emission (Lambertian
reflection). This means that the intensity of a surface point is equal for all
scattering directions and it is determined by the accumulation of the incoming
light at this point, only. On the one hand, the remaining degree of realism of
the resulting pictures is high enough due to the fact that by far the most ob-
jects in realistic environments mainly consist of ideally diffuse reflecting and
emitting objects, on the other hand, the gain of complexity reduction over
the general model is tremendous because of two points. First, the render-
ing equation itself is substantially simplified, second, due to the fact that a
point looks the same independently from the observer’s direction, commonly
available hardware graphics accelerators can effectively be utilized for the final
display.

The flow of light in the radiosity illumination model is described by the
radiosity integral equation,

By) = B(y) + ) [ Glx,y) Bx) dx. (1)

x,y € R? are points which lie in the two-dimensional surface space S defined
through the scene description®. The radiosity value B : R? — R at a point y
is the value of its light intensity? (energy per unit time per area) determined
by the weighted accumulation (integral) of the radiosities of all points x which
emit light into the environment.

3Deliberately, the placements of single terms in the following formulations of the radiosity
integral equation differ from classical literature, like they also do within these previous works.
For example, the locations of 7 and p are, for consistency, sometimes switched between places
inside or outside of the integral. This is a valid approach, since they do not depend on the
integration parameter.

4For simplicity, B is assumed being a one-dimensional intensity value sufficient for the
description of pure monochrome light. The transition to colors is explained in subsequent
paragraphs.
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The geometric term G : R? x R — R,

G(x,y) = By i vy (1.2)

m[x - ylI*

describes the geometric properties of the light transport through a vacuum.
It depends on the distance between x and y and the angles of the surface
normals at x and y with the direction of the connecting ray (see figure 1.1).
For its derivation, see for example [58, 20]. V : R® x R® — {0,1} is called the
wistbility term. Its value depends on the mutual visibility of the points x and
y and delivers the value zero if the direct view between x and y is occluded
by a scene object, otherwise one.

G(xy) B(x)

y B(Y)

Figure 1.1: The geometric term of the radiosity integral equation (eq. 1.2).

p:R® — Ris called the reflectance term. Tt is the reduced form of the gen-
eral fyspr and determines which portion of light is absorbed for one reflection
at a point y. p can be interpreted as the brightness of the particular surface,
and finally, the term E : R®* — R defines the self-emittance at each point of
the environment (light sources).

Intuitively spoken, equation (1.1) evaluated at all points y € S for given
values for B at all x € S describes one propagation of the recent energy state
into the environment. Its repetition accounts for several reflections according
to the simulation of the whole flow of light until it is absorbed to a certain
degree through the terms p and G.

Up to now, we have been speaking just about “intensities”. This is sufficient
for examining “monochrome geometries”, like for example only gray objects
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resulting in black-and-white pictures. Examining colored environments, the
light spectrum must be taken into account by utilizing a well-known short-cut
— the separate calculation of the intensities of three different color bands,
and the summation of the results. In this case, the reflectance term and the
radiosity are functions B, p, E : R®* — R3 with each output component defining
a value for a separate color band.

If not mentioned explicitly, we describe this work related to one general
intensity value only, and do not account for several color bands. Thus, B, p
and E are univariate functions at a first attempt. Its extension to an arbitrary
number of color bands is described in chapter 4.

1.3 Solving the Radiosity Equation

B, E, p, and G are continuous functions defined on an infinite number of
points which describe the surface domain. Central idea in solving the radiosity
equation is a discretization of the environment and herewith the mentioned
functions to turn the integration into a summation.

Intuitive explanations of this discretization have widely been used, for ex-
ample, in the classical approaches [21, 44] and [12], but also in more recent
work like [25]. Here, surfaces are cut into n subpatches and single radiosity
constants b; : ¢ = 1...n are taken as approximation of the average intensity
shading over the patches’ range. Then, the numerical solution of the radiosity
equation is performed by initializing the radiosities b; with its average emit-
tances derived from F and by exchanging these energies between each pair
(¢,7) of subpatches weighted by the related formfactor k;j, i,j = 1...n. The
formfactor is calculated by integrating the term G over the domains of the
1™ and j*™ subpatch. The radiosity is accumulated on each of the subpatches
and then repropagated several times until the energy which is not absorbed is
driven below a certain threshold.

In contrast to this more intuitive formulation, it has been recognized that
radiosity belongs to the large class of general finite element problems. In
particular, equation (1.1) has the shape of a Fredholm integral equation of the
second kind (see [20] for a comprehensive classification), which has been used in
several fields of physics. For consistency, we define the kernel K : R? xR® — R
like

K(x,y) =ply) G(x,y) (1.3)

and modify the notation of the radiosity integral equation (eq. 1.1) to

B(y) = E(y) + / K(xy) B(x) dx, (1.4)
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which delivers a convenient transition to operator notation
B=FE+ KB, (1.5)

with the radiosity transport operator K defined according to equation (1.3) by
(see also [60], page 182)°

(KB)() = o) | Gloxy)Bx) . (1.6
Its solution is primarily an integration task and analytical solutions for the
radiosity problem have not yet been found for the general case.

In this work, solving the radiosity integral equation is based on a projection
method leading to a discretization of equation (1.5) through its representation
by a finite set of base functions. In the following, we do not regard Monte
Carlo methods. For their description see [30, 53, 63, 20].

Finite Elements and Radiosity

Projection methods under the general framework of finite element methods
have been applied in most radiosity approaches. The same holds for the pre-
sented work which is based on a general FEM approach — the Galerkin method
[66, 54]. It assumes the radiosity B represented by an approximation

B(x) = Z bi Ni(x) (1.7)

through a linear function space {N; : R®* — R, i = 1...n} with the unknown
radiosity coefficients b;,1 = 1...n. Similarly, £ can be written as linear com-
bination of the same base weighted by coefficients e;, 7 = 1...n like

E(x) = Zei-Ni(X)- (1.8)

For the following derivation, we use vector notation changing equations (1.7)
and (1.8) to
B(x) =N(x)b (1.9)

and )
E(x) = N(x)e, (1.10)

®Note that equations (1.5) and (1.6) are short forms of B(y) = E(y) + K(B(x)) and
(K(Bx)(y) = p(y) [s G(x,¥)B(x) dx, respectively.
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respectively, with a vector b = (by, by ... b,) of the radiosity coefficients, a vector
e = (e, ez ... e,) of coefficients for the emitted energy, and a vector of the base
function components N = (Ny, Ny ... V).

Through equations (1.9) and (1.10) the radiosity integral equation (eq. 1.4)
can be reformulated as

N(y)b = N(y)e + K(N(x)b)(y)- (1.11)
In order to get a discrete form of equation (1.11), we eliminate the function base

components on both sides by applying the linear projection operator [<1<T‘ >} 6,

N = (Ny, Ny ... N,) is the dual vector of N defined through the dual functions
N;, where <NZ~‘]\7]-> = 0;; holds and ¢;; denotes the Kronecker delta. The inner

product (:|-) of two functions f and g is defined as (f|g) = [ _f - g, (see also
[60] and [2]). It follows

[(N|Nb)] = [(N]Ne)]| + [(N|kmyb)] . (1.12)

Since [<1§"N>} = I, where I denotes the identity matrix, equation (1.12) can

be reformulated like
b =e+ Kb, (1.13)

with the discrete transport operator — the transport matriz — K, consisting
of single transport coefficients k;; between a pair of function components N;
and N;, with K = {k;; : ¢, j = 1...n} defined by

b = (3] [ Kexy)0 de)

= (W)|o) [ Gy ax)
= /SJVi(y)p(y)/SG(X’Y)Nj(X) dx dy. (1.14)

Nz(Y)

The shape of equation (1.13) even proposes a method for its solution — the
calculation of a finite Neumann series

b=(1+) KW¥)e, (1.15)

where the components of e are defined by

e; = (E|N)), Vi=0...n.

64[...]” denotes the creation of a vector or a matrix.
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Intuitively, equation (1.15) is evaluated by executing equation (1.13) through
the recursion

b? = e (1.16)
bkt = e+ Kb® k=1..00 (1.17)

which converges due to the spectral radius of (I — K) being less than one (see,
for example, [13], pgs. 110-111).

Every b(®) defines a new approximate solution of the radiosity, which the
coefficients b on the right side is replaced with. Each evaluation of equation
(1.17) — each element of the Neumann series — can be interpreted as another
reflection of the propagated light at the geometry.

This type of solution by a relaxation method is most common in the field
of radiosity since general inversion techniques mostly fail due to the size of the
linear system

I-K)b=e. (1.18)

Equation (1.14) is the general formulation of a transport coefficient between
two function base components, from which the transfer coefficients of classical
radiosity approaches (for example the formfactor) can be derived.

Generally the radiosity base does not require to be orthogonal. In this case,
the linear system must be modified, i.e., single components of the radiosity base
influence each other, and even the transfer matrix must be regarded under this
influence. In this case, computational resources are increased and the simple
form of a linear system must be extended aggravating the general view on this
work. Thus, in the following, we assume the radiosity problem being focused
on orthonormal bases, where all N; equal their duals N;.

Several authors assume an orthonormal function base [12, 66, 25] — transfer
coefficients change to

by = [ M)oly) [ G6ey)N(x) dx dy.
s s
The approaches [21, 44, 12] utilize a further implicitly simplified form of equa-
tion (1.14) like
kij = / p(y) / G(x,y) dx dy.
s s
Here, constant base function components with a value of 1 have been defined
implicitly supporting the surfaces only locally, i.e., the base components do

not overlap.
The definition of the classical formfactor (see [13]),

kij = p; // G(x,y) dx dy,
S
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originates from the two simplifications that, first, the absorption term p(y) is
assumed being constant for one patch, and second, the function base compo-
nents N; do not reach over more than one patch. Thus, p does not vary on
points y when integrating over one N;, and it can be pulled out of the integral
into a constant coefficient p;.

1.4 Motivation

The radiosity function must be adequately represented through the distribu-
tion of radiosity base components on the geometry. This implies, on the one
hand, that the amount of them suffices for mimicking the shape of the unknown
radiosity, on the other hand, the number of bases must be kept as small as
possible, since, with them, the required computing resources grow drastically
(eq. 1.13).

These goals are challenged by the following two issues.

a) Default discretization. It is hardly possible to invent a function base
with its components reaching over separate surface elements.

Thus, surface boundaries, more or less randomly generated through a mod-
eler program, are commonly tolerated for settling down of at least one single
base component each. This default discretization (initial linking) does not ac-
count for any efficiency criterion, and thus, nowadays geometry requirements
of up to several tenths of thousands of polygons quickly set limits to solving
the radiosity equation.

b) Sequencing issue. Many classical radiosity methods regard the discretiza-
tion task as two separate processes like, first, creating a radiosity base, and
second, calculating the corresponding transfer coefficients (eq. 1.14). Although,
for efficiency reasons, most approaches slightly couple these separate tasks, an
ideal way to solve the problem seems to be generally impossible, due to the
fact that as long as a solution of B is not known, a sufficient criterion for its
approximation is not available — and, vice versa, as long as the radiosity base
and with it the transfer coefficients are not determined, a solution for B can
not be computed.

These two facts have been directing this work to, on the one hand, focusing
attention neither on B nor on K, separately, but on the combined term of
the light flow KB, and on the other hand, to not accounting for the surface
geometry explicitly, but instead, to examining the goal function KB implicitly
by sampling.

Previous Work. Consider classical radiosity approaches and their regard to
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the term KB.

e In classical radiosity (CR) [21, 44] an arbitrary base on the surfaces is
created (subdivision into subpatches). Since the subdivision does not
regard the intensity bleeding (which is unknown yet), a common aid has
been to estimate’ the solution B — which virtually can be seen like an
estimation of the light flow KB — and then, to develop the subdivision
accordingly.

e Progressive radiosity approaches (PR) [12], like they have been imple-
mented in many commercially available software packages [61, 3|, com-
pute direct shadows of the light sources (examination of EK) from which
an initial discretization is derived.

e Hierarchical approaches (HR,WR) [25, 22] are up to now the most promis-
ing attempts of regarding KB, since they start with a coarse discretiza-
tion of the surface domain, but then, refine patches depending on the
actual size of the transfer coefficients multiplied by the emitted radios-
ity. Additionally, the coherence of KB is estimated by computing the
degree of mutual visibility between pairs of radiosity base elements. The
resulting representation of the function KB is very compact.

e Multigridding methods [25, 13] are commonly applied to all of the above
methods. In principle, they can be seen like assuming an arbitrary base
at the start of the iteration process on which a preliminary solution B is
calculated. From the result an alternate base is derived which is assumed
to be more suitable to represent the final bleeding on the surfaces, and
then, the iteration process is started again. Here, KB is accounted for
implicitly, since its analysis is based on a particular approximation of B
on the surfaces.

In these examples, KB has been regarded in a more or less indirect way,
and the focus is commonly directed on the surface geometry. The reason is
self-evident. Ideally accounting for KB is hardly possible if the geometrical
definition of surfaces must be regarded. The existence of polygons hinders the
application of well-known efficient mathematical approximation methods for
analyzing KB directly, and thus, it prohibits a completely free examination of
the light transfer relationships.

intuitively, with the knowledge of an experienced user
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1.5 Overview

In order to ideally focusing on the light flow and not only on the geometric term
K of the radiosity integral equation, this work is centered around the devel-
opment of a functional model of the term KB, the actual energy flow through
the scene. In the following, we denote KB simply as “kernel” in contrast to
the kernel definition used in finite element methods where it corresponds to
the geometric term K of the radiosity equation only. The basic idea of this
work is instantiated by the following simultaneously executed steps.

a) The term KB is assumed like a general independent goal function f :
RS — R of directed rays between two points (€ R?) of the scene geometry.
Sets of single rays are drawn from the scene definition®, and an adaptive
function approximation model is trained ® by them. The model adjusts
to the training samples by creating a compact internal representation
through reference samples (“reference rays”!?). These reference rays are
taken as centers of infinitely supported Gaussian radial basis functions
(RBF), and the whole construct can be seen as a linear function base
over Gaussians which approximates the term KB.

In the following, we denote this approximation model as kernel network,
which is reasonable due to the algorithm’s origin residing in the field of
artificial neural networks.

The approximation scheme is capable of importance sampling of the goal
function under examination. This means, starting at an initial arbitrary
sample set, it is capable of resampling the scene and creating new sets
of samples repeatedly. The scheme accounts for the variance of the goal
function.

The main advantage of this approach comes from the fact that the model
is developed virtually independently from the geometry. Thus, it can
strictly be separated from classical methods by the fact that it uses a
general approximation algorithm which does not account for an explicit
geometry description like single surfaces. Emphasis is laid on the optimal
representation of the kernel function. Clustering and coherence detec-
tion facilities of the model, which are described below, can efficiently be
utilized.

8in the classical way, by testing visibility and calculating G (eq. 1.1)

9which means “iteratively adjusted”. We stay with this terminology due to the particular
approximation model which stems from the field of artificial neural networks.

0¢comparable to links in HR
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b) The sets of sample values, created while generating the kernel network,
ideally account for the coherence in the function KB. This fact is utilized
to train a second approximation model, the shading network, which is
located on the surface domain. The end points of the kernel network’s
sample rays serve as training samples for the shading network, and thus,
due to this indirect connection to KB, it ideally suits to represent the
result of the light flow KB, the radiosity.

¢) With the described pair of separate networks, the determination of B to
get the training value KB and also the final radiosity result have been
left. B is derived from an FEM integration at certain time steps during
the simultaneous training of the kernel and the shading networks. It is
computed based on the internal representations of the two approximation
models. For that, the shading network’s reference points ! are taken as
centers of three-dimensional radial basis functions such that the network
defines a linear function base for the radiosity.

With this radiosity base, the integration operations “through the ker-
nel network” are executed and result in values for coefficients of the
radiosity base. The coeflicients together with the base deliver a radiosity
approximation which is used to adjust the training samples. Finally, the
kernel network adapts, in the subsequent training iterations, to the mod-
ified training samples and delivers an updated approximation of the light
flow. Virtually, the new training set are values K (E + B("), whereas at
the initial state the energy is given by the first element of the Neumann
series KE = KB,

Consider figure 1.2. The center of the algorithm is a permanently growing
sample set of values of KB(™ through which the kernel network as well as the
shading network is trained. Resampling is based on examining the geometry
and on an approximation accuracy criterion of the kernel network. At certain
time steps, the kernel network and the shading network are utilized for an FEM
computation whose resulting B™tY is taken to adjust the samples already
drawn from the geometry. The sample set is constantly adjusted to the actual
KB™ and thus, the light flow is the basic criterion for the evolving of the two
networks.

At each time step, the sample set consists of example values of KB™ with
a distribution suiting to the coherence of the light flow. The kernel network
contains reference rays of the samples set, which are centers of clusters in

1Tt is generally the same model as the kernel model but approximates a function g : R® —
R.
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Geometry definition
(goal function)
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geometry
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Shading Kernel
network network

FEM computation

Figure 1.2: The overview of the approach. Kernel and shading networks are
trained by the kernel sample set which is adjusted by intermediate FEM computa-
tions. The sample set is extended by resampling processes based on the geometry
and the FEM result.

the sample distribution. In other words, the kernel network is a compressed
instantiation of the light flow.

For the realization of this work, we developed the general neural network
function approximation method, described in chapter 2. Its capabilities are
proven in chapter 4. For the FEM simulation, a new kind of representation
of the surface domain was invented — another ANN (section 3.2). Chapter 3
describes the developments required for connecting both networks. It deter-
mines a solution for the analytical integration operations for the FEM. Finally,
chapter 4 presents possibilities to reduce the complexity of the whole approach,
and shows final results.
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Chapter 2

Growing Cell Structures

The incremental supervised growing cell structures network (ISGCS) [8, 17, 18]
is described in the following. It is regarded as a specific sort of general artificial
neural network for clustering and function approximation.

The algorithm initially bases on Fritzke’s work on growing cell structures
[18]. In section 2.4 we adjust its supervised learning facilities for the ability
of general function approximation [8], and in section 2.5 we extend it by a
resampling strategy [8] which enables importance sampling of the goal function
under examination.

In this work, the method serves as an approximation of the radiosity kernel
and delivers the required light flow discretization [6, 7] which we have been
asking for in the previous chapter. Additionally, the basic method is utilized
for the representation of the radiosity itself — the network topology is taken
as a discretization (meshing) of the geometry.

2.1 Approximation Theory

How to approximate or interpolate a given continuous, multivariate goal func-
tion f : R* — R™ by an approximation model F' : R* — R™ is the central
question in the area of approximation theory. The development of F'is justified
by its increased tractability and paid by the reduced accuracy of the model if
compared to evaluating the original function.

A common application — and the focus of this work — is the approximation
of a goal function which is defined implicitly by a set Q of single input- /output
values (samples) @ = {(&,¢G) € (R* x R™), 1 =1...|Q|}. The entirety of the
samples characterizes an abstract functionality which is concretized by the
approximation model.

In case of a small sample set, classical interpolation techniques can be
chosen, which are characterized by solving a system of linear equations in

15
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a way that the final interpolation model matches the sample points exactly.
If the number of samples is large, then classical matrix inversion techniques
are not convenient. Moreover, if the number of samples varies during the
development of the interpolation model (resampling) or if the sample values
change (incremental methods), then the mentioned techniques mostly fail. In
these cases, like in this work, heuristic approximation methods are more likely.
They have been regarded under several different terms like system identification
or inductive learning [45]. The notion nonparametric regression has been used
in statistics and is probably the best-known paraphrase for this subject.
Searching for such a kind of approximation technique can be characterized
by, first, choosing one class from available approximation models, and then,
to adjust a set of model parameters or weights through the application of a
model- and task-specific weight tuning algorithm (learning or training).

Approximation and Networks. Commonly, approximation models can
be seen as a conglomerate of a set of (simple) base functions. Describing
these combinations in terms of (through the topology of) networks has been
introduced to many different areas, due to its representative view on certain
classes of algorithms. In fact, the incorporation of networks, and especially
artificial neural networks [28, 51, 50], has led to a bunch of new algorithms for
solving mathematical problems, which, in many cases, outperform the well-
known classical approaches.

This work is based on the extension of a classical ANN algorithm for a
general approximation model, and thus, we adopt the ANN terminology, in
the following.

2.1.1 Artificial Neural Networks

The essentials of artificial neural networks [52, 28, 50| lie in the fact that they
consist of several single processing units which execute a simple activation func-
tion (combination function [52]) like for example summation or comparison of
its input signals. Units are connected in a network of uni-directional weighted
communication channels. Tuning these connection weights means training the
neural network, and the entireness of all connections defines its functionality.

Terminology. Artificial neural networks are commonly instantiated by single
layers which contain several units of the same type of activation function.!
Layers are interconnected in a feed-forward manner?, one layer can be seen
as connected to the successor by a connection matriz (see figure 2.1). This

! Principally, there may exist different types of activation functions in one layer (see [28]).
2There also exist recurrent networks [28].
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Figure 2.1: An example 5-3-4 feed-forward network with one hidden layer, acti-
vation functions ¢Z-(k), and connection matrices W) Lk =1..2.

connection matrix formalizes the weighted coupling of each of the unit outputs
to an arbitrary number of unit inputs (multiple fan-out).

Consider an ANN having p layers. For notational consistency, a 0 layer is
added [28] carrying identity functions as activation functions. The p™ layer is
called the output layer. Input- and output layers connect the network to the
“outer world”, and the remaining layers 1 to p — 1 are named hidden layers
consisting of hidden units. An input is propagated through the network from
the 0™ to the p™ layer, weighing the signals by the connection weight matrices
and evaluating the activation function at each unit.

The k™ layer consists of mj, k = 0... p, units. The dimensions of the 0" and
the p*" layer are identical with the input and output dimensions of the network,
respectively. Two layers £ — 1 and k are connected by a connection matrix
W) = {wg-c)}, i=1.my, j=1..mj_,, k=1..p. One unit ¢, t =1...mj,
of the k™ layer contains the activation function 9151-(’“) : R™-1 x R™-1 — R,
of the output signals from the preceding layer, which are weighted by a line
w'" of the layer connection matrix W), The layer function ®®) : (R™: x
]Rm%fl) x R™-1 — R™, the multivariate output of an array of unit functions
of a layer k, k = 1...p, is denoted as the concatenation ®*) (W& x(*-1) =
(60 (WP xk-1) ¢ (W) xk-1)  pk) (wgi,x(’“_l))), with an input vector

my,
x(#=1) € R™-1 from the preceeding layer’s output.
We denote the network output ( € R™ as function ¥ : R* — R™ with
¢ = ¥(&) for a given input £ € R*. W equals the output of the p™ layer,
¥ = &® and it is computed through the recursion

%0 = £,
x® = W(WH® xE-Dy k=1 _p.
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—dr?

Figure 2.2: Gaussian e for varying values of the expansion d

2.2 Basic Topology of an ISGCS

An ISGCS is a two-layered?® feed-forward network with n units in the 0 layer
(the input layer), which are called cells, and m output units. In the following,
we denote an ISGCS by the set A of cells {¢;, i =1...z}.

The first layer of an ISGCS consists of z hidden units, the 0™ and the 1*
layers are connected by the connection matrix W, and the first and the output
layer by V. Here, for notational convenience, we changed the names of the
matrices W) and W® to W and V, respectively. z is equivalent to m from
the preceding section.

The first layer consists of z Gaussian radial basis functions [43], £, : R* —
R, i=1..z2,

Q&) =% with r=|w;—¢||. (2.1)

The RBF’s output activation depends on the distance of an n-dimensional
input vector & from an RBF’s center vector w; — rows of the matrix W
(see figure 2.2). In contrast to the preceding section, here, we modified the
parametrization of the activation functions in a way that the center vectors w;
are seen as being a part of the definition of the (2, — attached to particular
cells ¢; of the network. The w; are interpreted as the locations of the RBFs,
and the RBFs’ activations originate just from their distances from the network

3input layer ignored
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Figure 2.3: A general network, similar to figure 2.1, drawn in a way that eases
the interpretation as growing cell structures. The units of layer 1 are instantiated
by their weight vectors, rows of the weight matrix W. They are interpreted as the
cell positions in the three-dimensional input space. Connections are only drawn
partly. A two-dimensional lateral topology (triangulation) can be observed (grey
area)®. This is explained in section 2.3

input vector. The units can be seen as n-dimensional “representatives” for
particular regions in the input space (reference cells).

The RBF’s standard deviation or smoothness parameter d; defines the ex-
pansion or range of an (2; and is fixed, i.e., it is not part of the network weights
which are tuned in the following learning algorithms?.

The layer’s output function is defined as 2 : R* x R* — R?,

QW &) = (2(6), 2(E) . 2.(9)). (2.2)

Figure 2.3 shows an ISGCS drawn in a style which is common for general
mapping networks. The cells of layer 1 are three-dimensional units (n = 3)
— the network input connections. The units are placed regarding an areal
topology (exposed as grey area together with embedded connections between

4In fact, also the d; are modified regarding an additional network topology, which is
explained in section 2.3. For consistency, this is decoupled from the general ANN training.
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their two-dimensional positions). This topological information is explained in
section 2.3.

The second layer, the output layer, consists of m functions X : R* x R* —
R, j=1..m,
Ej(vja X) =Vj;-X, (23)

which is simply a summation of the activations of the first layer’s units x €
R* = Q(W, &) weighted by the connection matrix V. The layer output X :
(R™ x R*) x R* — R™ is

X(V,x) = (X1(vy,x), Xo(ve,X) ... X(Vin, X)) (2.4)
and the whole network output ( € R™ = ¥ : R* — R™ is defined as
¥() =2 (V,2(W,9)). (2.5)

Like the w;, the v; are attached to each of the cells ¢;. In the following,
we apply this attachment strategy to almost all objects which define local
properties of a cell or of its activation function.

Training the ISGCS is divided into two separate parts®. The first layer’s
weights are adjusted according to an unsupervised learning strategy, and the
output weights are changed in a supervised manner. Both strategies are ex-
plained in the next section, they can also be seen as the general learning strate-
gies for the training of artificial neural networks. We explain them regarding
the particular ISGCS needs.

For later studies we define’

Definition 1. An arbitrary set of a = | A|, a > 0 cells and every subset B of A,
with b= |B| and 0 < b < a is a valid ISGCS network.

In the following, when writing the term AX regarding a placeholder X for
a general variable, then we implicitly assume that this is an alteration value

used in a way like
X(new) — AX + X(old)'

2.2.1 Unsupervised Learning

Unsupervised learning (USL) or general competitive learning is applied to the
first layer of the ISGCS according to the formula

AWy = €BMU(§ - WBMU)7 (2'6)

6 Although, they are executed concurrently.
"This definition is different if compared to the classical work [17].
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with egyy € R, €egyy > 0, a global parameter for the adaption strength and
wiyy the weight vector of a particular cell ¢gyy which is determined by the
following definition.

Definition 2. For a particular input € € R" of a network A, the best matching
unit (BMU) is defined as the cell with the index 6 where

0:R* — {1,2...2}, (E€R) — (A(€) € {1,2...2}),

| woe) — €| = ie{If,lzhf.z}”Wi — ¢ (2.7)

is the so-called matching function and z the number of cells in A.

Equation (2.7) picks the unit from the network which lies closest® to the actual
input sample, and equation (2.6) moves it into the direction of the input sample
in the n-dimensional space. This action can be interpreted as competing for
the best matching of a cell’s position against the actual input sample. The
cell which wins the competition is moved towards the input to decrease its
matching uncertainty for the next time when a similar input is presented to
the network. It leads to an assignment of cells to particular regions of the
input space (classification), and the continuous adjustment of these reference
cells (clustering) delivers an optimal positioning in a cluster’s center, in a way
that the error of misclassification is minimized.’

For example, if the input samples presented to the first layer are equally
distributed, then, through equation (2.6), the cells will adjust to “span” the
distribution uniformly — approximately the same amount of input samples
lies inside of one Voronoi region [64] of a specific cell. If the input distribution
is not of uniform type — clusters of samples in the input space exist — then
the cells will adapt to these clusters, i.e., reference cells will arise which stay
for different accumulations of samples in certain regions (classification).

This type of learning is called “unsupervised”, since the weights of the layer
self-organize according to an unknown sample distribution.

The presented competitive learning algorithm, principally, is applied in
most iterative clustering approaches, like, for example, k-means clustering or
the Linde-Buzo-Gray algorithm [35], or the prominent Kohonen feature map
[31]. For an overview of classical literature, see [15].

8in respect to the Euclidian distance

9This scheme is also used in the Kohonen feature map algorithm. We refer to it in later
sections.
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2.2.2 Supervised Learning

Whereas the criterion for unsupervised learning is the distance of a training
sample input £ € R™ to a cell weight vector w; € R™, supervised learning (SL)
is controlled by the distance of the training sample output QA € R™ to the
network output ¢ € R™ = W¥(¢), i.e., the error which the network generates
by comparing its output with the training sample goal value (gradient descend
learning [28, 50]).

In the same manner like the misclassification error is minimized in USL by
moving some vectors w; to approach the position of an input £ in the n-di-
mensional input space, the network output vector is moved into the direction
of the output training vector in the m-dimensional output space. This is
accomplished according to

Avi=n(( =) - 2(€) with (=€), Vie{l..|A]}, (28)

with an adaption strength parameter n € R, n > 0 and the definition of
2; from equation (2.1). Consider, with v;, we denote in the following those
weights of the output matrix which are connected from a particular cell ¢; to
the output layer (one row of V). Equation (2.8) can be explained like moving
the cell output weights into the direction of (:“ . The strength of this movement
depends on the calculated error (é — () and the responsibility of a certain cell
for that error — the cell activation £2;(§).

2.3 Lateral Topology

2.3.1 Training

Up to now, the topology and the learning scheme of the ISGCS do not essen-
tially differ from classical ANN approaches. But now, an additional topological
information, a lateral cell topology is introduced. It is defined between the cells
of the network in a way that the cells build a graph of a predefined fixed lat-
eral dimension k. It is predefined in the sense that it stays the same through
the whole training process and after training. Thus virtually, the term ISGCS
designates a class of networks of certain dimensions.

Cells are connected forming single geometric base elements (simplices) de-
pending on k. Setting k = 2, the simplices are triangles. In case of £k =1, the
simplest base elements are lines, for £k = 3 tetrahedrons, and generally, they
are called k-simplices which span the corresponding k-space.

Moving cells by paying attention to the underlying lateral topology becomes
a part of the unsupervised training (see section 2.2.1). A cell ¢; in the k-dimen-
sional neighborhood Ny of a best matching unit cgyy is moved according
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to
AW'L' = 6/\[(5 - WBMU)7 VC,' E NBMU7 (29)

with the moving strength parameter for neighboring cells exr € R, ex > 0.
The neighborhood N; of a cell ¢; is defined by the lateral network topology,
i.e., it is the set of cells with a direct connection c;.

Definition 3. The neighborhood set N; of a cell ¢; € A is the set of those cells
which are directly connected to c; through lateral connections.

On page 35, this definition is extended to the general term “k-neighborhood”
which includes all cells located in a particular topological distance.

“Three dimensionalities”. It follows a more detailed discussion of the men-
tioned three different types of dimensions.

n — 1is the literal dimension of the input data. It is the dimension of the
sample vector and identical to the input dimension of the network. For
example, if the network learns a function over three-dimensional points,
then the input dimension equals three and the samples are three-dimen-
sional vectors.

k — For example, although three-dimensional points are represented by three-
dimensional vectors, in our case, they lie on two-dimensional surfaces in
the three-dimensional space. Thus, their implicit dimension £k equals
2.

k — The existence of the topological lateral dimension as explained in this
section, restricts the cells from completely free distributing in the n-di-
mensional input space. In case of an implicit dimension which equals
the topological dimension, this is not a real restriction, and additionally,
a topological structure is created on the reference cells and herewith
on the sample data. This structure may help in analyzing the data,
i.e., topological information contained in the sample data is implicitly
extracted and memorized in the structure of the ISGCS .

One typical application is dimensionality reduction where the data are
assumed as being of lower implicit dimension than it looks like (due to n).
In this type of applications, sample data of very high literal dimension
can easily be structured to regard its “real dimension”.

In other words, the topological information hidden in the training data
is exposed by its “projection” on the internal (lateral) structure of the
network — a topological mapping [31, 32, 33] is generated.
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Figure 2.4: A (k = 2)-dimensional network trained with (n = 3)-dimensional
data uniformly distributed on a (k = 2)-dimensional area embedded in R3®. The
scheme of insertion of cells will be explained in section 2.3.2.

See for example figure 2.4 and figure 2.5 which show the training process'®

of (k = 2)-dimensional networks trained with (n = 3)-dimensional data
(points) distributed in (k = 2)-dimensional space. Figure 2.5 is created by a
nonuniform data distribution.

Besides the application of dimensionality reduction, one can also imagine
the inverse case where k is larger than k& — higher dimensional data are pro-
jected onto a network of lower dimension. Figure 2.6 shows an example of two
networks trained with data for which £ > £ holds. On the rightmost side, a
one-dimensional network adapts to a two-dimensional space, the left and the
mid picture (stereo representation) expose the same for a three dimensional
data distribution. Further example applications can be found in [33, 50].

10The training, i.e., the growing scheme is explained in section 2.3.2.
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Figure 2.5: The same as in figure 2.4 but with a doubled sample density in the
lower right quarter.
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Figure 2.6: In the rightmost picture, a one-dimensional network is trained with
two-dimensional data (n =3, k =1, k = 2), in the left and mid picture, with a
three-dimensional (k = 3) data set (drawn in stereo representation).

Now, learning of an ISGCS (training the connection weights) has been
described completely. We add the announced definition of the remaining un-
known parameter d; (eq. 2.1) of the Gaussian of a cell ¢; — the expansion
coefficient. It is adapted each time in advance to the evaluation of the Gaus-
sians and it is defined by the average length I; of the edges emanating from
cell ¢; as

— 1
di=1li=—— i — Wi||). 2.10
N ];M(Hw will) (2.10)

Equation (2.10) is a simple heuristics which showed practical benefits in [18,
17, 19, 8|, and thus, it is adopted in this work. d; is adjusted each time the
unit weights change, i.e., after each training step where the units’ positions
change.

Figure 2.7: Two separate two-dimensional clusters in R®. The algorithm deletes
cells which represent a small sample distribution.
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Figure 2.8: A three-dimensional network trained with a three-dimensional sep-
arated data set.

With the presented schemes for adjusting the connection weights and d;, the
algorithm got the essential features necessary for supervised and unsupervised
learning.

What follows is one of the most important advantages of an ISGCS —
growing and shrinking of the network through insertion and deletion of cells
(see figures 2.7 and 2.8).

Training always starts with the simplest element of the underlying dimen-
sion k£ — one simplex. Then, according to a certain error criterion which is
accumulated during the training cycles, new cells are inserted or deleted, and
whenever this happens, the basic topology of the network is kept homogeneous,
i.e., the network must consist of simplices of the same predefined dimension &,
only. The next section shows how this is accomplished.

2.3.2 Insertion of Cells
Adjusting the First Layer’s Weights

Insertion of cells is always done by splitting one edge of the network, inserting
a new cell in the middle and connecting the surrounding edges such that the
topology stays a valid network. We assume a criterion!! which determines the
edge to be split between two cells ¢, and c¢;. The new cell ¢, is inserted by the

formula
1
W= (Wg+wy).

Each time the units’ weights change, commonly the cells’ positions in the
lateral topology change, and with it, also the term d; (equation (2.10)) is
adapted.

to be explained in section 2.4
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Adjusting the Output Layer’s Weights

Each cell contributes to the output of the network by its output weights v;. If a
new cell is inserted into the network topology, then intuitively formulated, the
contribution of the affected cells must be redistributed according to the new
network topology. For that we define a parameter I'; for each cell ¢; € A, which
can be seen as the ratio of the change of a cell’s scope in the k-dimensional
network space.

The scope of a cell is given by the cell’s Voronoi volume. Since the compu-
tation of the Voronoi volume is too complex for k > 2 [17], we approximate it
by the term ﬁ

fim @)", (2.11)
where k is the implicit dimension of the training data and /; the mean length
of the edges emanating from a cell ¢; (eq. 2.10). The parameters of a particular
cell which are affected by the alteration of the network topology are adjusted
according to its Voronoi volume before and after the insertion or deletion of
cells. This relationship is determined by the coefficient

B f;(new) _ .]Z;(old)

T; = 7o , Ve; € A (2.12)

If a cell ¢, is inserted, the Voronoi volumes of the cells in its neighborhood
change and equation (2.12) is utilized for an initial approximate determination
of the output weight vectors v, and that of the neighboring cells v;, ¢; € N,
with the equations

AVj = FJ *Vy, \V/Cj S Nr, (213)
v, = — Z Av;. (2.14)
JENT

Adjusting the Network Topology

As mentioned, the lateral topology of the network must be changed in a way
that the defined basic structure will hold. We outline the basic strategy from
[17] without going further into detail, since the algorithm strongly depends
on the particular implementation-specific data structures. We assume a data
structure based on simplices and edges, and modify them as follows.

e Adjust edges: connect ¢, with all cells which are neighbors of both, ¢,
and cy;

¢ Adjust simplices: duplicate each k-simplex which contains an edge qf
from ¢, to ¢;. Replace ¢f in one of the k-simplices by gr and in the
other by rf .
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2.3.3 Deletion of Cells

The principal scheme for the deletion of cells is based on the cell’s relative
signal frequency. It is calculated through tracking the average number of hits
of a cell, where “hits” means the number of times of the cell ¢; being a best
matching unit, i.e., the relative signal frequency h;. The probability density
estimate p; of a cell is calculated according to p; = h;/ f;.

The probability density can be taken as a measure for the importance of a
cell regarding its contribution to the network task. In case of a low probability
density the cell has only little influence and can be deleted from the network.
The usage of the probability density, i.e., its extended usage concerning the
network’s approximation accuracy is explained in section 2.42.

We assume a cell ¢, is detected for deletion, then deletion is accomplished
by deletion of

e simplices and edges which include cell ¢g,
e cells which are not member of any simplex.

Parameters and weights of the remaining cells, edges, and simplices are not
touched since their influence on the network is small due to their small relative
signal frequency.

The described algorithms for modifying the lateral topology should serve
as a rough proposal, only, since they strongly depend on the data structures of
the particular implementation. For example, on the one hand, it is possible to
neglect an explicit edge structure, on the other hand, adding more elaborated
structures (like for example winged edges, etc.) can increase efficiency. Even
the usage of public software libraries might require a reformulation of the
demanded tasks in order to fit into the corresponding data structures.

2.4 Resource Term

Up to now, we described how to delete and to insert cells, this section ex-
plains if and where to trigger such actions. The scheme is derived from the
originating work [17] like the preceeding sections of the growing cell structures
approach. In the following, we extend the basic scheme of a resource term
for the purposes of this work, enabling general function approximation and a
resampling mechanism.

12Due to its extension, there, it is renamed to resource term.
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The decision of when and where to insert new cells in the network is made
with the help of the resource term attached to each of the cells. It is the
extension of the term “probability density” defined in the last section. The
resource term is updated each time a sample is presented to the network and
it can be seen (to be explained in the following) like a cell-local parameter for
a particular “need” of either inserting new cells in that regions, or increasing
the number of training samples there (by resampling, see section 2.5).

We differentiate between three different types of resource terms:

1. The supervised resource term 1;~ of a cell ¢; is defined as

A, = |[C=¢|, witn = (o), (2.15)
AP = —a-1", Ve € A (2.16)

Presenting a sample I/O pair (ﬁ,é) to the network, the supervised re-
source term 7~ is the difference between the goal value (:“ to be learned
and the output value of the network ( — the training error. It is accu-
mulated only at the best matching unit cgyy of the network.

Equation (2.16) provides the network cells with an aging functionality.
The parameter « € R, a > 0, weighs the influence of more recent events
stronger. It determines how fast earlier accumulations “vanish”, and
virtually, it calculates an average over all 7% during the whole training
process.

2. The unsupervised resource term (pure probability density) 7,”5" of a cell
¢;, principally, is used as a counter for the number of times when a cell
was selected as BMU. It is accomplished by equation (2.17),

Arlse = 1, (2.17)
AT = —a -7 Ve € A (2.18)

The reason for applying equation (2.18) is the same as for equation (2.16).
Counting serves for determining the distribution of the samples which lie
in a particular cell’s Voronoi region.

3. The extended resource term 7;° of a cell ¢; is essentially a specific combi-
nation of 7% and 7,”°". For example, we outline three kinds of usage of

the three resource terms to create networks with different functionalities.

a) Pure USL — only 7,°5" is taken as criterion for insertion and dele-
tion of cells. The distribution of the underlying training samples
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exposes the need for cells, due to the assumption that a high sam-
ple distribution should also be represented by a higher distribution
of reference cells. The output layer is ignored. Pure clustering of
the training data is performed.

USL with an output layer — the input layer is treated as described
in (a). The output layer is trained independently. Similar to point
(a), the RBF layer performs clustering, additionally an output func-
tion approximation facility is utilized.

The parallel training of the topology and the output layer is the
essential advantage of the ISGCS compared to similar methods like
hybrid schemes of the Kohonen feature map [28, 33]. There, the two
training schemes must be executed sequentially, due to the fixed
topology of the network. This fact does not allow for a flexible
consistent combination of both training schemes.

Combined USL and SL — the input sample distribution and the
approximation error are combined by the definition of an extended
resource term like

=t (2.19)

Equation (2.19) can be seen similar to an L; error measure and em-
ulates a very efficient function approximation facility (shown in [8]).
The resource term is influenced by the approximation accuracy as
well as the sample distribution. This is the essential extension to
the classical algorithm [17], since there, only the sample distribution
influences insertion and deletion of cells. Here, also the approxima-
tion error is utilized, which leads to inserting cells at those places of
the goal function which show a higher variance in its function value.
Thus, reference cells are inserted and deleted in a way that the goal
function is represented more efficiently — more cells are located at
regions of a complicated function shape. In case of smooth zones,
less cells are positioned according to less function representation
requirements.

Point (c) in the last paragraph is only one example for a valid resource

term, which has shown sufficient robustness for almost all approximation tasks.
Principally, many other combinations are also imaginable. For consistency, in
the following we mostly refer to one general resource term 1; which then is a
particular definition of 7*.
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2.4.1 Insertion of Cells

The resource term defined in the last section enables the determination of a
certain “need” for a better representation of the goal function by the approxi-
mation model — for example, by more cells. In this case, a new cell is inserted
into the neighborhood of the cell with the highest resource term in the network.

Paying attention to the lateral topology when inserting cells has been ex-
plained in section 2.3.2. Now, we focus on how the resource term of a new
cell has to be derived. Due to the fact that an inserted cell ¢, has no history
in terms of the past iteration process, it must extract a resource term portion
from the cells ¢; which are already existing in its environment. This affects 7
and 7,”°" only, since these are the only terms which accumulate information
during the training process.

Since the Voronoi volumes of the cells are proportional to the resource
terms 7,”%% and 7%, they are also used for the resource term modification in
case of changing the network topology — similar to modifying the output layer
weights (equations 2.13 and 2.14),

™= — Z ATt and AT =Ty -7% Ve € N, (2.20)
CiENT

T = — Z A" and ATSH =Ty -175% Ve, €N, (2.21)
CiENT

with T'; like defined in equation (2.12). In other words, the neighboring cells
donate a portion of its accumulated resource to the new cell ¢, in order to
approximate its amount of resource in a way such as if ¢, would already have
been existing at this place earlier.

The determination of the cell ¢, with the highest resource term and the
insertion of a new cell is accomplished after A € N training steps.

2.4.2 Deletion of Cells

A cell’s resource term which has been fallen below a certain threshold ¢ €
R, € > 0, exposes a certain amount of a cell’s redundancy in terms of not
significantly supporting the representation facilities of the network. Testing
this case is done after x € N training steps, similar to the cell insertion facility.

If a cell is removed from the network, also the adjacent simplices are re-
moved. Since the cell’s Voronoi regions completely vanish, the neighboring
cells’ resource terms and weights do not need to be touched. The lateral
topology is modified according to section 2.3.3.
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2.5 Resampling

In this concluding section, we propose a resampling strategy which prevents the
goal function under examination from arbitrary sampling. It enables taking a
moderate amount of samples at the start, and then to incrementally resample
the goal function (importance sampling) according to a criterion derived from
the actual training accuracy — the resource term. In the following, we refer
to the general resource term 7; of a cell ¢; (see page 2.4), since even for the
resampling, the resource can be defined in several ways.

Definition 4. The network activation 74 : R®* — R for a set of cells A and an
input £ € R* s

Ta€) =D i(r), with r=]g—w. (2.22)
ci€EA

g

Definition 5. An input sample £ € R™ is located inside of a set of cells A if the
network activation T 4(€) exceeds a threshold ¢,

va: R = {T,F}, ms):{’; T4 >

d

Definition 6. A cell ¢; is a critical cell if its resource term exceeds the average
of all resource terms of a set of cells A to a certain fraction w,

. N T lfTZZwﬁ
o'A.{l,Q...Z}—){T,F}: UA(Z)_{ F e]se’

with 71 = [A|™ Z T;.
cEA
The critical cells of a network A define a critical sub-network Acgr of A,

Acr ={ci: ¢ € A,ou(i) = T}.
O
With these three definitions, a sample can be identified as lying “in the

range” of a network, and we utilize this capability to detect critical regions in
a network, i.e., to recognize if an input & lies in a critical region.
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Resampling is accomplished by scanning the overall input space with a fixed
step size. At each step, the generated input sample is fed into the network
without evaluating the goal function but only testing equation (2.22). Depend-
ing on the following definition, the network activation triggers the sample as
critical or not.

Definition 7. A position &€ € R" in the input domain lies inside of a critical
region (CR) if it is located in an environment of critical cells or in an outside
region of the network,

O R" — {T, F}, SD.A(f) — { £ iefis(eq')ACR(é-)) Vo= (UA(g)) (2.23)

0

If equation (2.23) holds, the actual input has detected a critical region.
The scanning step size, now, is decreased, and successively new samples are
evaluated from the goal function — a new set of samples is generated and
added to the existing training set.

Equation (2.23) designates a critical region, first, as such being represented
mainly by critical cells, or second, being “represented by no cells”. The first
case simply denotes that the resource term in this region — for example, the
approximation error — is extraordinarily high, the second fact detects regions
where the input domain is defined, but where the ISGCS training did not
create an instantiation by cells. The latter case typically appears in general
self-organizing mapping approaches and happens at boundary regions of the
input space. Due to the missing samples outside of the network, the sample
distribution can be seen as artificially modified when applying the proposed
learning scheme. This leads to a shrinking of the network apart from the
boundaries. We avoid this drawback to a certain degree [8] by artificially
increasing the distribution at these places, i.e., by creating additional samples
at these outside regions.

The overall ISGCS algorithm is outlined in figure 2.9. For pure unsuper-
vised learning, the gray boxes can be removed. See also figure 4.7.d-f as an
example for a function approximation task of the two-dimensional goal func-
tion from figure 4.6.b.

2.6 Implementation Details and Complexity

On a first attempt, the presented training algorithm seems to be quite complex
and dependent on the number of cells. In the following, we show that this is
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Select input/output dimensions n, m, and the dimension of the lateral topology
k of the network A. Estimate the implicit sample dimension k.

Set the parameters for decreasing the resource term «. Set learning rates for
the input layer, €zuy, €xr. Set the counter values for insertion and deletion of
cells, A\, , and initialize the corresponding counters p = 0 and ¢ = 0.

Create a random initial input sample set Q,. Set the sample set counter,
s =0.

Set the learning rate for the output layer, 1, and the resampling parameters ¢
and w. Set the counter value v for resampling of the goal function.

Create the initial output values for Qy by evaluating the goal function.

Increment counters p and gq.

For all cells ¢;, calculate from 7,°* and 7;* the resource term 7; which

decides on insertion and deletion of cells.

If p = A then insert a cell at the longest edge emanating from the
cell ¢; with the highest resource term 7; and set p = 0.

If ¢ = « then delete the cell ¢; with the lowest resource term 7; if
it exceeds the threshold € and, in each case, set ¢ = 0.

Adjust the cell centers of the first layer by the unsupervised learn-
ing scheme from equation (2.6).

For all cells ¢;, adjust the cells’ unsupervised resource term 7,°
according to equations (2.17) and (2.18).

Adjust the output weights of the first layer due to the gradient
descend learning rule from equation (2.8).

For all cells c;, adjust the cell's supervised resource term 7;* ac-
cording to equations (2.15) and (2.16).

After v iteration steps and for all cells ¢;, assemble 7; from 7.** and 7;*,
and, depending on 7;, add a new training sample set Q. , increment s.

Repeat until some error criterion is satisfied or a certain network size is reached.

Figure 2.9: The complete ISGCS algorithm. The light boxes describe the ISGCS
algorithm if pure clustering is demanded. Adding the gray boxes enables supervised
learning additionally.
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not the case, moreover, through utilizing lateral locality of cells and samples
we can reach constant complexity for the cycle of one iteration.

Locality of Cells

Evaluating the whole network output has to be accomplished for the adaption
of the output weights and the cells’ resource terms. This influences the amount
of time resources crucially, since, while training, it has to be executed every
time a sample is presented to the network. Evaluation of the network output
consists of evaluating and accumulating each of the unit activations weighted
by the output weights (equations 2.2 and 2.3). This process is O(z), with z
the number of cells in the network.

To reduce this work we profit from the locality of each of the cells’ Gaus-
sians defined through the standard deviation, i.e., the distance of the direct
neighbors (eq. 2.10). For further explanations we define the k-neighborhood
of each cell.

Definition 8. The k-neighborhood NF of a cell ¢; of an ISGCS A is the set of
cells {c; : ¢; € A} which can be reached from c; on the shortest way by travers-
ing not more than k edges of the network.

In other words, the k-neighborhood of a cell ¢; is the set of those cells which
lie in a topological distance from ¢; which is smaller than or equals k. Reaching
acell ¢; € NF from ¢; must be possible by passing not more than k — 1 other
cells. It holds N? = {¢;} and N;' = N (see page 23).

Since the value of a Gaussian decreases with its center’s distance to the ar-
gument, the influence of Gaussians which lie in a large distance from the input
vanish. Only the neighbors in the k-neighborhood of a cell have a significant
contribution to the accumulation result and the others can be neglected by
accepting a small error.

Thus, instead of calculating all cell’s output activation, the BMU of a
certain input sample is determined and only the activations of the cells in the
k-neighborhood are accumulated.

Locality of Samples

Beside the evaluation of the network output, the search for the BMU is the
second most time consuming operation since it also has to be done for every
iteration step.

One characteristic feature of an ISGCS is the fact that a cell’s position
adapts slightly to a certain sample input. A sample which is presented to
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the network, again, is not likely to change its affiliation to a certain Voronoi
volume very often. This feature is utilized by storing for each sample a pointer
to the corresponding BMU. This pointer is used as a BMU estimate for the
next time when this sample is selected for training. Based on this BMU, only
its k-neighborhood is searched for a better matching cell instead of scanning
the whole network.

Thus, through the locality of samples and cells, “touching” the network is a
cell-local task, only depending on the number of cells in a cell’s neighborhood,
which is constant.

Own experiments for several example goal functions have shown that a
depth of 3 for the evaluation of the Gaussians (i.e., only evaluating the cells of
NF=3) creates an error which lies several orders in magnitude below the overall
error.

For the search of the BMU, a depth of £ = 1 suffices in most cases, for
k = 3 the results are identical with a global search.



Chapter 3

Radiosity with Cell Structures

We follow up the application of the results of chapter 2, divided into three parts.
First, an approximation model of the radiosity kernel is generated instantiated
by an ISGCS [6], second, with the generated sample set, concurrently, a further
growing cell structures network is trained by the end points of the sample set
generated with the kernel net, and third, based on both network structures,
the integration method required by the FEM is formulated.

3.1 Kernel Base (Light Flow Approximation)

(Goal Function

Since we want to account for the whole flow of light, the goal function f to be
approximated is the geometric kernel multiplied by the energy emitted from
the patches. Recalling equation (1.1),

B(y) = B(y) + | Klxy) B6x) dx @)
S goal funch T
goal function fa

the whole energy transfer will be approximated by an ISGCS ¥ which is defined
in the following. Training sample rays are derived, first, from the geometry and
the emittance of the light sources, second, after the first FEM computation,
additionally, from its results (see section 3.4).

Approximation Model

The goal function f: R® - R, f(x,y) = K(x,y)B(x) is approximated by the
network W,

V(¢ ~ K(x,y) B(x), with &= (z1,22,23,Y1,Y%2,Y3), (3.2)

37
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and ¥ is a four-dimensional ISGCS (k = 4) with a six-dimensional input
layer and a one-dimensional output layer, ¥ : R® — R. ¥ is trained and
evaluated by input 6-tuples defined from two points (ray) x and y lying on
the surfaces of the scene definition. The lateral dimension of £ = 4 is chosen
due to the fact that the kernel is a four-dimensional function, i.e., a function
of two points (a ray) on the two-dimensional surface space. The instantiation
of the ISGCS (see section 2.2) is

W)= vm 2m(r), with r=]|wn—¢], (3.3)
m=1

and z the number of cells in the network. The functions (2, are the RBFs of
the first layer, v, the one-dimensional output weight of a cell m, and w,, its
6-dimensional center. The matrix V in this case is just a vector v € R?, and
each component v; is the coefficient of the cell’s support to the actual output.
We reformulate equation (3.3) into matrix notation.

(&) = vQ(r),

with r=(r,r2...7,), T = ||Wm —&||, m=1...2, (3.4)

and  : R® — R? is a vector of the RBFSs, and r a vector of distances between
the input ¢ and the according center w,, of the RBF m.

Intuitively, the kernel operator described in section 1.2 as a function op-
erating on points x to deliver points y, here, is assumed as a function with
an input of two points and an output of the “operation strength”. This is a
slightly different but valid view on the meaning of the kernel operator.

The resulting approximation interpolates reference rays (RBFs) in a four-
dimensional space. These rays can be seen similar to links from the HR ap-
proach, but their relation to the geometry is much weaker, since they are not
developed by focusing on patches, but on the general approximation facilities
of a set of arbitrary rays. Thus, displaying them in a three-dimensional space
would not lighten one’s imagination. Instead we refer to the Flatland ' exam-
ples presented in chapter 4.1, where two-dimensional kernels are displayed as
two-dimensional pictures with the reference rays marked.

!Flatland is the two-dimensional analogue of the three-dimensional space. It is com-
monly used to ease the understanding of relations in space by investigating its two-dimen-
sional translation (see [26]).
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3.2 Radiosity Mesh

Classical radiosity approaches are characterized by the following steps.

1. Define an orthonormal radiosity function base N; : R® - R, i = 1...n,
of size n and the position of its component functions somewhere on the
surfaces of the geometry, such that it enables an approximation of the
radiosity by a linear combination B ~ Y., b; N;.

2. Transfer the energy between these base components by executing the ra-
diosity kernel operator on the radiosity base, i.e., calculate the n? transfer
coefficients k;; = [[¢ N;N; dx dy, i,j = 1...n, between the base compo-
nents, and accumulate the energy on the surfaces through the accumu-
lation of the base function coefficients, Ab; := 2?21 kijbj, Vi=1...n.

3. Go to step 2 until the transferred energy falls below a certain threshold,
or go to step 1 to adjust number or shape of the base functions according
to some criterion defined by the actual solution — the coefficients b;
(multigridding).

In this work, instead of focusing on the approximation of the radiosity
function, we start with the development of the kernel approximation model ¥
(see section 3.1), and then, a suitable radiosity base is derived to perform the
integration tasks.

Although there is some representation of the kernel in the kind of a function
base (the RBFs), this base has nothing in common with the usual classical
representation of a kernel, i.e., it is not a linear combination of the tensor
products of the radiosity base components. Thus, since the kernel model is
not able being interpreted as a tensor product base, we need to invent an
independent base which exists on the surface domain. On the one hand, it
appears self-evident to derive this base from the kernel model topology directly,
for example, by placing its components at the start and end points of the kernel
cell centers. But, on the other hand, this kind of arbitrary definition would lead
to a function base which generally is unfavorable concerning its approximation
facilities.

Thus, we utilize the growing cell structures’ facility of finding adequate
distributions of reference objects and create another two-dimensional growing
cell structures network, the shading network (SN). It is trained by points lying
on the surface geometry and it must be instantiated by a two-dimensional lat-
eral topology. Its simplices are triangles (k = 2) and establish a homogeneous
global triangulation over the geometry, driven by the distribution of sample
points. The single cells can be seen as reference points which “interpolate”
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the shape of the geometry. The shading network is trained and evolves con-
currently to the training of the kernel network and guarantees the geometry
independence and the iterative character of the complete approach.

The shading network is trained in an unsupervised manner, and addition-
ally, a three-dimensional output layer learns the normal vector of the presented
point. This is required for the integration tasks to be explained in chapter 3.
The training samples for the shading network are derived directly from the
kernel samples, i.e., for a sample ray like (1, 2, 3, Y1, Y2, ¥3), the shading net-
work sample is the vector (yi,ys,y3). This ensures that the shading samples
and with it the final network account for the light flow, i.e., the distribution of
base centers suits to the distribution of the kernel samples, moreover, inherits
its efficiency.

Although the base components derived from the shading network are trained
by points from the geometry definition, they only approximate the original sur-
face domain S§. Thus, besides the original scene definition S, we denote the
approximate geometry S , instantiated by the areas of the single simplices (tri-
angles) Si:k=1..7o0fthe shading network. See figure 4.12.b for an example
of a shading network.

The next section describes the generation of a linear function base attached
to the network mesh.

3.3 Radiosity Basis Functions

Consider the common definition of the radiosity integral equation
By) = B(y)+ | Kixy) Bx)dx.
s

reformulated by replacing the ANN kernel approximation model,

Bly) = B()+ [ w(e) dx (35)
with ¢ = (561,332,333,111,92,93)-

In the following, the exact notion of the arguments of ¥ is ignored, for example
P(¢) = ¥(x,y). We assume the radiosity base being an orthogonal vector N =
(N1, Ny ... N;) of base components N;. The components are defined focusing on
the mesh which is generated in the preceeding section. The detailed algorithm
follows in the next section.

In equation (3.5), there is no explicit representation of B(x), which, for
example, could be transformed into an approximation through a linear func-
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tion base, and virtually, the equation even differs from the general shape of a
Fredholm integral equation.

For the discretization of equation (3.5), similar to section 1.3, we first
apply the linear projection operator [{N|-)] which leads to a “nearly discrete”?

. b—e+ [<N v) /S T(x,y) dx>} , (3.6)

+ <NZ y) /S\Il(x, y) dx>

= ot [ M) [ By dxay. (3.7)

with lines

&
I

It remains a discretization of the domain {x} from which the outgoing radiosity
has to be accumulated by the integration operator approximation W.

One can think of the fact that in equation (3.7) there already exists some
kind of discretization — by the kernel base components. Replacing equation
(3.3) for W in equation (3.7) delivers

/N /va (x,y)dxdy, i=1..

and a system like
b=e+K'v

with the non-quadratic transfer array K' € R* x R* and coefficients K' =
{ki;},i=1..2,j=1..70 defined like

/N / (x,y) dx dy. (3.8)

We will not investigate this method due to two issues. First, the integration
operation (eq. 3.8) would be difficult, since the integration domain of the out-
going radiosity (points x on &) must be accessed through accessing the surface
geometry directly. This is what we wanted to avoid from the beginning of this
work®. Second, in the way described above, integrating equation (3.8) needs
to be accomplished numerically.

20nly B on the left side of the equation and the emittances are converted to coefficients.
Here, the new integration domain is the shading network S leading to different integration
domains in equation (3.7).

3This is also the reason for using the shading network to define a radiosity base even at
points y (equations (3.6) and (3.7)).
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In our solution, we suggest describing the surface domain regarded from
points x only by using the shading network. By the facility of the basis com-
ponents of having a local support (the base will be discussed in more detail
in later sections) and by using Gaussians, we are able to find an analytical
solution of equation (3.8) and thus avoid its numerical evaluation.

In the following, we define the second base N while keeping it separate
from the definition of N. This degree of freedom is lifted in later paragraphs.

We assume the orthonormal base function vector N = (N, N, ... N;) and
a vector b = (by, by ... by) of f coefficients b; for approximating a void function
B : R® — R with B(x) = 1. In other words, we add the base in equation (3.5)
at points x. The coefficients of b serve for trimming the components’ weights
in a way that the function base approximates the value one.

Adding B into equation (3.7) delivers

by = e+ /N /‘Il X,y)B(x) dx dy (3.9)
= ez—i-/NZ(y) \Il(x,y)ZBJJ\_/J dx dy
$ S =1
= ei+/M(y) ¥(x,y) bN dx dy (3.10)
$ 8
1=1..1n

Due to ¥(x,y) ~ KB, equation (3.10) remains valid if B(x) = 1 holds for
allx € S. If B (x) only approximates a value of one, then a certain error
is introduced*. Equation (3.10) delivers a scheme to completely transform
equation (3.6) into a discrete form like

b=e+HD, (3.11)

with a matrix H € R x R*, H = {h;;}, i,= 1...7, j = 1...71 of coefficients
h;j defined like (eq. 3.10)

hij = /N /\IJ x,y)N;(x) dx dy. (3.12)

Obviously, this is not equivalent to the classical definition of a discrete linear
radiosity system. The differences are, on the one hand, the vector B with fixed
predefined components forcing B(x) = 1 and defined by b; = [ N;(x) dx, j =
1...n, and on the other hand, the second base N is denoted dlfferently from
N reinforcing that the base components not necessarily need to be identical®.

“to be discussed later
5Consider, we are even not able to write the linear system in the classical notation like
I-K)b=
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In classical radiosity approaches, using two different function bases would
expose disadvantages, since there is an additional base transformation needed
for transferring coefficients of the approximation of B(y) on the right side of
the radiosity equation to coefficients of the representation of B(x) on the left
side.

In contrast to classical approaches, in this work, the conversion of the coef-
ficients of the approximation of B(y) into single sample values is required only
to get new training values for the kernel network. These values are independent
from a particular function base, which relieves from any base transformations.
It delivers a new degree of freedom in the definition of radiosity bases, but
nevertheless, for an efficient integration algorithm, later in this work, one base
is used for both representations of the radiosity, B(x) and B(y).

The next two paragraphs discuss the convergence of the whole approach
focusing on the mentioned difference between classical approaches if compared
to this work. Then, in section 3.6, two instantiations of a base are discussed,
a constant, more common base and a base created by a set of Gaussians.

3.4 TIterating the Linear System

The preceeding paragraph defines how to operate the kernel network once to
get radiosity coefficients b related to a base N. Feeding the computed radiosity
back into the system to simulate further propagations of light will obviously
be accomplished implicitly through training the kernel network by values KB.
Each time a new approximation of the radiosity is calculated and represented
through the coefficients b, the training samples are adjusted by evaluating the
approximation bIN at the start points of the sample rays. The following train-
ing of the kernel network incrementally adjusts the approximation to match
the actual sample set.

In other words, the whole process of finding the solution of the radiosity
(see also figure 1.2) is centered around training both networks, where the values
KB are adjusted through single evaluations of equation (3.11). Concurrently,
the shading network topology evolves, since it depends on the distribution of
the kernel samples, which changes through the resampling processes of the
ANN training. Each time a single integration operation is triggered, first, a
new base is generated regarding the actual shape of the shading network, and
then, the integration of the transfer coefficients and the accumulation of the
result at the vector b is accomplished.

This approach is quite different to usual iteration techniques. We investi-
gate this property in detail in section 3.5. Now, the description of its algorith-
mical realization follows.
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Consider the classical finite Neumann series (see equation (1.3)) with &

elements,
b® = e+ KVe + KPe + ... + KWe. (3.13)

The k™ element of the series can be seen as the emitted energy which is prop-
agated k-times through the geometry. The final result is the sum of all these
bounces on the surfaces. Practical issues of iterating the radiosity equation
can be represented in a more convenient way by

b# =K(K.- k- (K(Ke+e)+e)---k---+e)+e (3.14)

which directs to the following algorithm for adjusting the kernel training sam-
ples (see also figure 1.2).

An existing set of samples {§; € R® = (x;,y;), ¢ = 1...} is assumed with
x; € R® and y; € R® are start and end points of the 7** sample (reference ray),
respectively. Each of them has an actual radiosity value sz(k) attached, which
contains the most recently computed radiosities B*)(x;) + E(x;) emitted from
the point x; after the k™ FEM integration. The term sgk) multiplied with the
geometry term K (x;,y;) is the actual training value for the network output.
Additionally, each sample has stored the emittance E(x;) to access it when
recalculating B**1) after another FEM iteration step, or in cases where new
sample sets are created. See an overview of these aspects in figure 3.1 which
outlines the complete iteration algorithm.

Updating the values sgk) might be seen as “base transform from N to
points”. The reason for creating the base, instead of integrating the kernel
network directly onto the sample start points x;, is the fact that the integra-
tion is not required for each single sample value but only for each component
of the function base with much fewer elements. Thus, just evaluating B®) if
an actual 55’“) must be known (after the FEM or after the resampling mecha-
nism of the ISGCS method) needs far less amount of computing resources than
the integration of the whole environment through the kernel network would
require.



3.5. CONVERGENCE 45

Set k = 0. For all samples (x;,y;), set 5. = BO(x;) = E(x;).

Repeat training of the kernel network with the goal value K(x;,y;) - sl(k)
(eq. 1.3) (and repeat training of the shading network with x; and the normal
at x;) until one integration of the FEM is triggered.

Calculate a new approximation B**1) by executing the integration like
described in section 3.2.

For all samples, set the new emission s\" ™ = B¢+ (x;) + E(x;).

Increment k.

Repeat until the discretization of the geometry reaches a predefined size limit.

Figure 3.1: Complete algorithm for iterating the modified radiosity integral equa-
tion of this work (propagating energy through the kernel network), based on ad-

Justing the emittances sgk) of the sample values (see figure 1.2).

3.5 Convergence

Convergence and accuracy of general Fredholm integral equations have widely
been investigated in the literature (for example, see [54]). In [36] error bounds
for the specific case of radiosity are analyzed, whereas Arvo et al. [2] have
studied this issue for general global illumination approaches. There, it has
been stated that an error bound for a radiosity system like

I-K)b=e, (3.15)

is defined by the sum of separate error sources from which we, in the following,
outline those three which are crucial for this work. First, the discretization
error arises from the projection of B to a finite linear function space, second,
the perturbation error arises from imprecisely evaluating the integral operator
K, which perturbs the whole linear system, and third, the computation error
comes from those elements of the Neumann series, which are not evaluated due
to lacking computational resources (i.e., time (for example in PR), or memory
(for example in CR, HR)).

In this work, we have developed a different integral equation (eq. 3.11).
To profit, nevertheless, from the results of [2], first, we explain where the two
differences arise, and second, we show that the equation, virtually, is identical
with the classical one.
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1. Consider the developed radiosity integral equation

Bly) = E(y)+ / T (¢) dx

— E(y)+ / (R (x, y)B(x)] B(x) dx. (3.16)

K and B are the explicitly written content of the approximation kernel
network ¥. On the one hand, a function B(£) = 1 has been introduced
to accomplish efficient integration operations, on the other hand, since
B is represented by its approximation through components of N°, it
introduces an additional perturbation of B.

2. Virtually, the presented algorithm looks in a way like it would never
calculate more than one element of the Neumann series, at all. This
might be derived from the fact that, since the integration results are
used to retrain the networks, this also implies a change of both network
topologies, and thus, a change of the radiosity base N for each following
FEM computation. Thus, in fact, the discrete linear system (eq. 3.11) is
evaluated for a certain function base only once.

In order to account for the first point from above we reformulate equation
(3.16) to

Bly) = E(y) + /S K(x,y) Bx)B(x) dx (3.17)

which delivers a linear system like in equation (3.15) but with different transfer
coefficients,

In equation (3.17), B is taken out of the closed network approximation and its
approximation coefficients are used like in the usual linear system. This is a
valid procedure due to the fact that even B is calculated through the base N,
and thus, its re-projection can be accomplished without loss of accuracy. With
equation (3.18), we can rewrite equation (3.16) in the common form (equation
(3.15)), and thus, eliminate the first difference (point 1) from above. The term
B is included at the transfer coefficients directing the view from a perturbed
radiosity to a perturbed transfer coefficient. This reduces the original problem
to just an additional perturbation error (like defined in [2]) whose amount is
constant for a certain base and which does not extend the given error bounds
essentially.

6Note, from this point, we assume the bases N and N as being identical.
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Regarding the second point from above, its elimination is accomplished in a
more intuitive way. The radiosity error bounds have already been defined in [2]
for a static base N — a static instantiation of K and a constant approximation
facility of N. If we assume that our system (eq. 3.15) even has a static base but
simply increases the approximation facility of N and approximation accuracy
of K during the network training, then we can state, while ignoring the change
of the function base, that this work’s error is at least smaller than that of a
classical static linear system. In other words, changing the accuracy of the
kernel operator during training does not affect the error bounds formulated in

[2].

3.6 Gaussian Radiosity Base

Constant Base Components

One possible choice of a suitable base which is organized regarding the shading
network topology could be defined through constant components N; : R* — R,

v {3 1 e o9
In equation (3.19) separate box function components are defined, which sup-
port each triangle Sj, j = 1...n of the shading network. The base is orthogonal
regarding the inner product <]Vw‘]\7y> =/ 3 N, - N, dx of two arbitrary base
components N, and Ny, and delivers an average radiosity value which is con-
stant over the area of a separate triangle — similar to base definitions in CR,
PR, and HR.

Gaussian Base Components

The point of this work is the usage of Gaussian base components, like they are
suggested in the general ISGCS approximation model and like we have been
using them already in the kernel approximation model. On the one hand,
this ensures its applicability as a function base if attached to a growing cell
structures network. On the other hand, the next paragraphs will show how the
integration operations to derive the inner product and the transfer coefficients
of such a base will profit, i.e., a formula is derived, which allows for solving
the integrals analytically. This frees from an expensive numerical integration
like it is needed in almost all classical radiosity approaches.

In the following, together with a suitable inner product, the Gaussian base
is defined and its validity is proved.
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The linear base components used in this work are a set of Gaussian func-
tions P = {A4; : R®* - R}, k = 1...2 with centers W, € R® at the cell center
coordinates of the shading network,

2
Ap(x) =e % *° with s=|x— W, xR (3.20)

One Gaussian component, A, is centered at a common vertex of a set of
adjacent triangles. The dy are assigned the average distance of the neighboring
cells in the network topology. Consider, P does not play the same role as the
N; from the preceeding section. Due to the missing orthogonality, the P are
just the components from which, later in this work, an orthonormal base N
is built — each N; defined by a linear combination of the A;. The orthogonal
base, then, consists of base components each defined by a set of Gaussians with
according coefficients. These coeflicients account for the overlap of neighboring
Gaussians.”

Before testing the validity of the proposed radiosity base, regard the fol-
lowing notes concerning the base’s unusual properties.

The connection between the geometry surfaces (instantiated by the shading
network) and the components Ay is quite unusual if compared to classical
approaches. There is no unique domain belonging to each of them. Thus,
handling one Aj in the following integration operations (sections 3.6.1 and
3.8) means accounting for each of the surrounding simplices explicitly due to
its specific embedding in the three-dimensional space.

The Gaussians A, are defined for any choice of dimensionality, only basing
on some distance from its n-dimensional center. Even in our case, on the one
hand, the Gaussians are valid at all points in the three-dimensional space,
on the other hand, they are regarded as two-dimensional functions on the
two-dimensional shading network domain.

Validity of the Gaussian Function Base

We have been proposing the set P of functions A;, £k =1... Z on the Z vertices
of the shading network and assume that it is suitable to span the space of
possible radiosity solutions on the geometry S defined by n triangles. In the
following, we derive an orthonormal radiosity function base { Ny, k = 1...2} by
a linear combination of elements from P and prove the mathematical validity
of such a base. Since the base is a linear subspace of the space of all linear
function bases, it remains to prove existence and validity of an inner product
and of a norm, and finally, linear dependency are derived and proven.

"The single Gaussians have infinite expansion. Thus, the term ’neighboring’ relates to
the fact that the influence (concerning the inner product) of components which lie far from
each other can be ignored.
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For comprehensiveness, in this work, we omit the prove of the numerical
validity of the proposed base, like stability conditions, for example. Instead,
we rely on work from [18], in which it has been proven that a Gaussian base

on a growing cell structures network is an efficient approximation model. See
also [46, 48, 49].

Inner Product and Norm

We assume three elements z,y, 2z of the set M, the space of linear function
bases created from linear combinations of Gaussians A, over scalars ay, by, ¢, €
R, k = 1...z, respectively. For example, z € M — F{ax, k =1...2} : z =
a1/11 + a2/12 + ... ag/lg.

Defining a norm ||-|| for a linear system can be considered as associating
a “size” to each of the elements. The inner product (-|-) defines a kind of
“influence” between a pair of elements of M. We adopt the common definition
of the inner product of two functions = and v,

(z|y) =/x-de, (3.21)

S

with x points on the triangles S of the shading network, and equation (3.21)
must satisfy the following conditions.

L (z|y) = (y|z).

F o
I ((az + By)|z) = a(z]z) + B (yl2).
: (z]z) >0, Vo € M.

F

z|z) = 0 if and only if x = 0.

N[

I5: The norm is defined as ||z|| = (z|z)2.

Condition I5 leads to the definition of the norm of an element =z,

|lz|| = “/s”mZ dx. (3.22)

With z,y, 2 € M and two scalars «, 5 € R, the following must hold.

Ni: ||z|| > 0 and ||z]| = 0 if and only if z = 0.

Ny: |Joz|| = af|2]]-
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Ny lz +yll < =]l + [lyll-

Equations (3.21) and (3.22) can be rewritten like

(x|y>:/$ac-ydx = L(Z::CLZAZ) (Zi:bj/l]) dx

= Z aibj/AiAj dX, (323)
S

1<4,j<2

and

s 2
||x||2:/x2 ix = /(Zai/l,) dx
S S

=1

= Za?//l? dx + 2 Z aiaj/AiAj dx. (3.24)
/S $

1<i,j<%

j>i
In section 3.6.1, the computation of the inner product of two Gaussians A; and
A;® is described. For the following, we anticipate the existence of this result
and proceed with the proof of the linear independency of the chosen base.

Linear Independency

Consider a set of elements {z1, %5, ..., 73} : 1x € M,Vk = 1... 2 with a set of
vectors {aj,ay...as},a, € RE,Vk = 1... 2 where z, = Y ;| a;A;. With scalars
Q1,Qo, ...z, the base x1,xo, ... x5 is linear independent if

0T+ oo + ... Fazzs; =0 (3.25)

implies that oy = a3 = ... = a; = 0. In other words, the x; are linear
dependent if equation (3.25) holds with at least one coefficient being different
from zero. Linear independency is the basic demand for a stable algorithm
for the development of approximation models. In the following, we prove the
linear independency of the chosen base.

If the zx, £k = 1...Z are linear independent, then this holds also for a
base e, € M : e, = Zle 0ip;, k= 1...z, with the Kronecker delta ;.
Linear independency of a combination of Gaussians with equal expansion d
has been examined, for example, in [42]. In the case of this work, the d;, i =
1... 2z, differ from each other and we propose a proof based on a conversion

8; may equal j for the calculation of the norm.
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of the approximation term into a polynomial form over the Gaussians’ center
coordinates. It is assumed that A; € Qf, A; = (f;?, x;,x,r € Q?, and
r=(x—x;)%

Due to comprehensiveness, the proof follows for two-dimensional spaces,
but nevertheless, it holds even for higher dimensions.

z P
Zai/li = ZaiG_Ai||x_xi||2 (326)
i=1 1=1
n
= Z o; e Ai(r+3)
1=0

_ E :a’i efA (x2—2713; 1—|—wl | tz2— 2w2wi,2+w?,2)

n
— Z o (em%)_Ai (ezl)Aﬂxi,l e_Aiw%,l (em%)_Ai (ezz)AiZ.Z‘i,2 e_Aizgﬂ_
i=0
With the substitutions
v o= (o8 (3.27)
elos” s (3.28)
and a; = o; e 2% e‘Aiz%ﬂ, equation (3.26) can be written like
z n
Z o = Z a; vy RiTia g A gRi2i2 (3.29)

The above assumptions of the coordinates and expansions being elements of QQ
allow for the transformation of the exponents in equation (3.29) forming terms
with common denominators o, 8”,+", ", and its related nominators for each
Gaussian OZZ'I, ﬂi,, ’Yz"; 52',,

o) B 'r 5;
Eozz/l—g ava” 8" A" 53T

\‘

Wthh exposes a polynomial with the substitutions v = va”, 4 = uf”,t =
", 5§ = v like

il = a v @ 0 (3.30)
=1 1=0
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Considering v = 7', u = @, t =", 5 = " derived from equations (3.27)
and (3.28), there arise the auxiliary conditions

,Ea” — 6log2 as" 7 log

and

~

Y .
- elog2 30 i— 6zs%log 5
, .

In equation (3.30) the final polynomial is shown, which is zero only if all
coefficients a;, 7 = 1...2, i.e., «; equal zero, and thus the approximation
(eq. 3.26) is linear independent.

3.6.1 Calculating Inner Product and Norm

Figure 3.2: Parameterization of an integration point x on a triangle of the shading
network (one simplex) to calculate the concerning proportion of the inner product
of two RBFs, 4;(r;), A;(r;), each centered at w; and W, respectively.

Section 3.6 shows that inner product and norm of two elements z,y € M
can be reduced to the combination of terms of the form f s Aidj. Consider-
ing figure 3.2, we assume the A;, A; located at two cell centers W; and W;.
Integration has to be done over the environment S — all separate triangles
Se, k =1...7 of the shading network where 7 is the total number of its sim-
plices.

S 1 ¥ Sk

In figure 3.2 one simplex k is depicted, circumscribed by the cell centers Wy,
W, and Wy, Integration is accomplished over a point x € R® on S,. We
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define an integration substitution, x : R?> — R3, which runs through the area
of one triangle S, by barycentric coordinates like

x(s,t) = (1 —s—1) Wy + SWyr + t Wy,  with s+t < 1. (3.32)

From equation (3.32), the arguments of 4;, 4; (eq. 3.20), r;,7; : R2 - R —
the distances from the centers W;, W; of the Gaussians — are given by

ri(s,t) = [[Wi = x(s, )|, and r;(s,t) = ||W; —x(s,1)]. (3-33)

Substituting the three components of equation (3.32) into equation (3.31) leads
to

k=1 " Sk
7 1 pl-t
i -2 [|OX 0%
= Z/ / e 4’ e d 122 x | ds dt, (3.34)
—~ Jo Jo Os Ot
with Jije = || 2 x 2| is constant’ due to the linearity of equation (3.32)

and can be moved out of the integral. Finally inserting equation (3.33) into
equation (3.34) delivers

7 1 pl—t
iy =Yg [ [ e asat, (3.35)
k=1 0 70

where P, (z) denotes a polynomial in z of degree n of the form Py(s,t) =
A2+ Bt?+C s+Dt+FE st+F with coefficients A...F. Due to its obviousness,
we omit the lengthy derivation of these coefficients and suggest using reliable
automatic tools like Mathematica [65].

Now, we are able to calculate the inner product of two Gaussians A; and
A; on 3, and herewith, the inner product and norm of two elements of N. We
continue with the proof of the remaining axioms from page 49.

Assuming two elements z and y of the set M.

9Jijk is derived by applying the integration substitution rule, which is explained in the
appendix on page 101 in more detail.
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Proof.
o I;: From Equations (3.23) and (3.31) follows

@l = [ oy ix
= Y ab /AA dx =

1<4,5<2 1<4,5<2

azbZ/AA dx,

which is commutative since summation in R is commutative and f & Aidj dx =
fék A;A; dx holds for all k =1...7

o Iy:
((az + By)|2)

o
:<ii1aaz+5b ch>

= Z (a; +,Bbi)cj/AiAj dx (see equation (3.23))

1<4,5<2

= > aa,cj//l/l dx+ ) Bbc]//l/l dx
1<2,5<2 1<12,j<2

= a(z|z) + 5 (yl2).

o I3: From equation (3.24) and I5 follows

(ale) = ol = | (Z) (3.36)

which is nonnegative since integration is done over a nonnegative func-
tion.

o I,: Since

Z //12 dx+2 ) a,a]//l/l dx, (3.37)

1<4,j<2
Jj>i

if z = () then (z|z) equals 0. Otherwise, if z # 0 at at least one location,
then, due to the continuity of z, (x|z) # 0 holds.
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o Np: From ||z|| = v/{z|z) and I3 and I, follows N;.

o Nj: Since ax = Zle aa;A; holds and coefficients a; and herewith o
always appear pairwise in equation (3.24), Ns holds.

o Nj: Squaring ||z + y|| < ||z]| + ||y|| leads to
Iz +ylI” < ll=l* + lyll* + 2ll=1] - llyl],

where we insert equation (3.24),

Z(ai+bi)2/A? ix+2 Y (ai—i—bi)(aj—i-bj)//li/lj dx <

i=1 § 1<i,j<2 §
j>i

Zaf//lfdx—i—? Z aiaj[AiAj dx +
i=1 § S

1<i,j<2
>t

S8 [ aax2 3 by [ 4ty dxe+ 2l ol
o s iGigs U8

J>i

Expanding and collecting the terms on both sides leads to

=1 s

> (aby+asty) [ Audyax| < el o]

1<i,j<s §
i>i i

[ Z aibj/g/li/lj dX—Zasz/g/l? dx S
=1

1<4,j<2

(@ly) < llll - llyll,

and (z|y)> < ||lz[|? - ||y||? rewritten like ([ -y alx)2 < [az?dx- [y?dx
holds (see [11], page 176). This also holds for surface integrals, like used
in this work, due to the fact that the reparameterization just adds a
constant J;;;, to the integral (see equation (3.35) and section A.1).

O

3.7 Constant Base versus Gaussian Base

We introduced the representation of the emitted radiosity B(x) at the sur-
faces by a linear function base of a set of Gaussians, instead of assuming a
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Figure 3.3: On the left, the ideal distribution of Gaussian centers to reach the
best approximation accuracy of a constant function. On the right, a snapshot from
a typical shading network topology, the edge lengths emanating from a certain cell
vary stronger. Only one base function is shown on each side, the sizes of the slices
go with the according inner product with the center Gaussian.

constant base like proposed in section 3.6, and instead of just numerically in-
tegrating over the shading network triangles. Its advantage is the possibility
of an analytical integration of the transfer coefficients. Disadvantages arise in
the induced approximation error, which is the topic of this paragraph.

We stated on page 42 that the additional base should equal the constant
1 at all surface points. Thus, we investigate the general error arising through
approximating an exact constant by a set of Gaussians. The approximation
error is characterized by two criterions.

a) The best approximation is given if the network cells, i.e., the positions of
the Gaussians, are ideally distributed. In this case, all edges emanating
from a cell have equal lengths. Thus, all Gaussian centers are positioned
in the same distance from its neighbors, and the remaining error comes
from the general approximation facility regarding the shape of the chosen
function base components.

b) The distribution of Gaussians is less uniform. This is the case if the

expansion (d; of a Gaussian e“ik_zsz) which is calculated by the average
edge length emanating from a cell (see page 25), differs significantly from
the single edge lengths.

See figure 3.3 as an example. On the left, an optimal uniform distribution
of the shading network which mimics the two-dimensional surface space is
shown. It corresponds to the locally uniform distribution of training samples.
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Figure 3.4: The error of a Gaussian function base approximating a constant. On
the left, the error of the ideal case of uniformly distributed Gaussians, increasing
to the right side of the diagram, where the positions of the cells are randomized
at a certain rate. Experiments have shown that usually the network centers are
randomized by a rate of about 10% which leads to an average MSE of about 10%.

On the right, a more realistic shape of the shading network is exposed, where
the positions jitter around their optimal centers. In the following, we estimate
the error by an experiment.

A network is created of the size of 20 x 20 Gaussians. The Gaussians are
distributed with equal distance to their direct neighbors (like in figure 3.3 on
the left side). The base is orthonormalized and projected on the constant 1.
Then, samples from inside of one triangle in the center of the whole network
are taken and the network output at these sample positions is compared to
1. Assuming the described constellation of Gaussians which are equally dis-
tributed in the function space is optimal, now, the error we can achieve in
approximating a constant is minimal.

Since Gaussians in the shading network usually are not distributed in that
equability, we generate an artificial jittering of the Gaussians from their ideal
place, and draw the error against the jittering rate in figure 3.4.

From the diagram, we are able to derive the error generated through the
use of the Gaussian base, since, in experiments, it has been measured that the
shading network edges of one Gaussian center vary by about 10%. Thus, an
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average error increase by about 10% in the whole radiosity approximation is
assumed.

3.8 Operating the Radiosity

The kernel is a linear operator operating on the surface space S. In a finite
element approach an approximation of the radiosity is given through a linear
function system and the projection of a function at &, here, turns into the
projection of the approximation’s base components. Herewith, a base compo-
nent Ny is projected onto its dual Nk and the transfer coefficient is calculated
by the inner product of a component with its dual. Since orthonormal bases
are self-dual, calculating the dual of each of the base components is equivalent
to orthonormalizing the particular base, which is described in the following
section.

3.8.1 Orthonormalizing the Gaussian Base

Orthogonalization can be seen as a “strong form of linear independence” [60].
It is based on the inner product of two functions which can be regarded as the
overlap, the support, or the “influence” which they exercise over each other.
This influence must be accounted for if, for example, a base transformation is
accomplished.

We assume a vector A of non-orthonormal, linear independent function

base components Ag, ¢ = 1...2 and our goal of an orthogonal function base
vector N = (Ny, N ... N3).

Definition 9. A set of n functions f;, i = 1...n is orthogonal if (fi|f;) =
0, Vi,j:4# 7, 1,5 = 1...n holds. It is orthonormal if, additionally, the func-
tions’ norms || fi|| equal 1 for alli =1...n

In this work, N is calculated by the Schmidt orthogonalization rule,

k—1

(A| N;)
Nl = /11, Nk = E i7 k=2 ,’2’, (338)
— (N;|N;)’

which delivers a sequence of orthogonal functions Ny, N, ... N; which finally are

normalized by

Practically spoken, scheme (3.38) delivers successively orthogonal functions
Ni, kK = 1...2 which are combinations of the £ — 1 foregoing developments
N;, j=1..k—1 and another new A;. A coefficient matrix A,
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Al A Ay - A
N1 a1 0 tee 0
Ny | ag1  ag :
0
Ng as1 P Asz

is created consisting of rows a; of coefficients ay, agso ... agz, which define the
resulting orthonormal base components

2 k
Nk = Zazé/lz = ai A= Z (Lzé/l, (340)
=1 1=1

The described scheme robustly generates the coefficients of A. In some cases,
i.e., for some critical topologies of the shading network (see section 4.4), there
arise “nearly linear dependence” which means that Gaussians of a new base
component, generated in equation (3.38), are very similar to Gaussians of a
formerly created Ny, i.e., there are similar centers and expansions. These
cases are detected by the above scheme through a very small value ||Ni||. In
the implementation, these cases are intercepted by testing a threshold. If || Ny||
falls below the threshold, then the particular Ny is rejected from the base and
the corresponding A; which is taken to generate the new Ny (eq. 3.38) is not
longer considered in the following development.

3.8.2 Integration

Up to now, the radiosity base and the kernel model has been defined. It
remains the integration operation, the calculation of the transfer coefficients
hij derived in section 3.3 (eq. 3.12).

We assume the vector of orthonormal radiosity base components N =
(N1, Ny ... N,,) and recall the definition of the transfer coefficients,

hij :/§Ni(y) /SA\I’(X,y)Nj(X) dx dy. (3.41)

Resolving the RBF's in equation (3.41) by applying equation (3.40) and the
kernel representation from equation (3.4) leads to

hi = /S A(y)a; /S vQ(x,y) A(x) a; dx dy

= D ipaj ) v //S Ap(x)2(x,y)Ay(y) dx dy  (3.42)

p,g=1
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For calculating equation (3.42) for one particular pair of bases (i, j), all com-
binations of three RBF's, those of the kernel and a pair of radiosity base com-
ponents must be integrated. For notational convenience, we define coefficients
g0 Tepresenting these combinations by

towo = [ [ 1,60 44(5) o) dx dy, (3.43

containing the integrands of a pair of radiosity RBFs (4, and 4,) and one
kernel Gaussian (£2,). This fractional transfer coefficient looks, from the com-
putational point of view, similar to the integration task explained in section
3.6.1 by equation (3.34). The difference is the additional transfer Gaussian (2,.
The term fi g, (eq. 3.43) can be regarded like the transfer coefficient between
the two components 4, and A4, through a kernel component {2,. See figure 3.5
for the following explanations.

Figure 3.5: Parameterization of the integration points x and y on two triangles
(simplices) of the shading network to calculate the concerning proportion of the
transfer coefficient of two RBFs, A,(r,), A;(r,), centered at W, and W,.

Considering two components A, and A, centered at the corresponding cell
centers w, and w,. Integration must be accomplished over all pairs of triangles

{(8,8)) : S, S, € 8} of the approximate geometry S defined by the shading
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network.
hpqoz///l Ag 2y dxdy = ) / /ApAqQdedy (3.44)
1<k, i<i V' Sk 7SI

One pair is denoted by k£ and [ in figure 3.5, and it is bounded by the vertices
Wi, Wi, Wi, and Wy, Wy, and Wy, respectively. We assume two integration
points x on S, and y on 5’1, and, similar to section 3.6.1, we define a two-di-
mensional parameterization, x,y : R — R?, over both triangles,

X(S,t) = (1 - S — t) V'i’k;l + SW]CH + t\?vkm, with s+t S 1, (345)
viu,v) =1 —u—v)Wp +uWp +vWpr, with uw+ov<1.  (3.46)

The distances 7,7, : R2 — R of x and y from the centers W, and W,, respec-
tively, can be written like

ro(s,1) = [, = x(5,0)l, and ry(u,v) = W, —y(wo)ll,  (347)

and the distance r, : R* — R of the concatenation (x,y) € R® from the center
w, € RS of the kernel Gaussian 2, is

ro(8, t,u,v) = \/7"12)(3, t) +12(u,v). (3.48)

Similar to page 53, replacing equations (3.47) and (3.48) in equation (3.44)
leads to the solution

Ppgo = ) //A,,Aq()odxdy:
Se /S8

1<k 1<
S A T
1<k,I<f
X
‘ ds dt du dv, (3.49)
where the constant'® J,,on = | & x & Hay X ay” can be drawn out of the

integral, resulting in a term of the form

1—v 1-t
T / / / / sotut) ds df du dv,|  (3.50)

1<k,l<n

with a polynomial Py(s,t,u,v) = As?+ Bt?+Cu?>+Dv?*+Es+Ft+Gu+
Hv+Ist+ Juv+ K. We recommend to support the calculation of f,,, by
using Mathematica [65].

0For its derivation, see the appendix on page 101.
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3.9 Approximate Integrations

Computation of the integration operations for the inner product (section 3.6.1)
and the transfer coefficient (section 3.8.2) are quite costly due to two reasons.
First, the integration has to be done over each triangle of the shading network
separately, second, the integration itself must be done numerically since an
analytical solution is not available.

In the following, we propose an integration shortcut which is based on
the property that, in certain regions of the shading network, the triangles are
positioned in a way that they form a unique, flat surface — a unique domain. In
these cases, integration does not need to be done over each simplex separately,
and moreover, if integration is done over the complete support of the Gaussians,
then an analytical solution (described in sections 3.9.2 and 3.9.3) is available.

3.9.1 Ceriterion for Symbolic Integration

For the decision when to apply symbolic or numerical integration, two con-
ditions must be verified. First, the domain of integration must exist, i.e.,
the support of a participating Gaussian must not exceed the shading network
boundaries, and second, the Gaussian must lie in a flat domain. In later sec-
tions, the mentioned properties are characterized by continuous parameters
which measure a certain degree of how much they apply, and a threshold de-
cides if the criteria hold or not.

1) The existence condition is satisfied if a certain A; supports mainly inner
pieces of the shading network topology. In other words, the approximate
geometry, represented by the shading network, must exist under a par-
ticular Gaussian — the expansion d; should not exceed the range of the
network significantly.

2) The determination of a unique domain requires the following two con-
ditions.

a) The set of those triangles which are supported by a certain Gaussian
describes a flat area at average. This arises, for example, at loca-
tions which lie “central” to a geometry surface, since the shading
network adapts to the geometry, and thus to its flatness.

b) Two Gaussians A;, A; lie in the same domain if, first, their normals
point into the same direction, and second, if they belong to the
same closed network portion.!!

"The shading network usually is split into several subnetworks through the training (see
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a) A b) c) A d)
‘ e
Inner Produ& Inner Product
Inner Product Transfer Transfer Coefficient Transfer

Coefficient Coefficient
?

numerical analytical

Figure 3.6: Algorithm for deciding when to use numerical instead of analytical
integration of the transfer coefficient and of the inner product, respectively.

The upper row shows the general possibilities of how the participating two base
components can be located on the shading network. For example, calculation of
the inner product is not accomplished (set to zero) if the components are located
on the same sub-network with opposed normals (d) or if they are located on
separate sub-networks (c). The transfer coefficient is set to zero, for example, if
the normals of the participating components do not point to each other (c). In
cases (a) and (b) integrations are done (lower box) according to the network shape
— numerical integration is accomplished if the participating base components lie
too close to the network boundaries or if the network roughness supported by the
base components is too high, otherwise analytical integration is accepted.

Depending on these conditions, we decide about the kind of computation
for the following tasks.

I) Inner product: If point 2b) is not fulfilled, the inner product is set to
zero. Otherwise symbolic integration is triggered in cases where points
1) and 2a) are satisfied for the participating 4;. For all other cases,
numerical integration is applied.

II) Transfer coefficient: If point 2b) is satisfied the transfer coefficient is
set to zero'2. Otherwise symbolic integration is accomplished if points
1) and 2a) hold for both RBFs, if not, numerical integration is applied.

section 2.2), each of these networks is defined as belonging to different domains, and each
contained cell is marked with the corresponding network identifier.

12This serves for efficiency reasons only, since the transfer coefficient also equals zero if it
is calculated through the kernel network.
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For an overview of the algorithm, see figure 3.6. There, each arrow exposes
the only case in which the integrations are performed for the different tasks
instead of assigning the results to zero.

The exact definition of the “existence” and the “being a flat domain” prop-
erty which finally enable their implementation is explained in section 3.9.4.

Enhanced radiosity base shape. We like to mention that setting the in-
ner product in a way described above virtually changes the described base
definition but it does not change its principle properties and especially its va-
lidity which has been proven in section 3.2. Moreover, the base qualifying for
an instantiation of a radiosity base is optimized due to the normal criterion
(point 2b) which is an additional facility suitable for modeling edges in the
network topology. By cutting the influence between base components at sharp
edges, an oracle is defined which “seems to detect” an edge of the underlying
geometry, modeled by the shading network function base.

3.9.2 Approximating the Inner Product

Presupposing a unique domain, the single participating elements S, are as-
sumed instantiating a coherent surface S. Thus, the inner product can be
integrated over a flat domain and without limits as follows.

Consider again equations (3.31) and (3.34). The integral over all S; now
can simply be written as an area integral over the common parameter 7,

k=1 " Sk

with d as the distance between the centers w; and w;. Equation (3.51) can be
solved analytically like

<AZ|AJ> =7 —"2_¢ %%, (352)
s+ d;

From equation (3.52) the solution of the norm ||4;|| = (/1,-|/1i>% of a A; can be
derived like

4] = &2 (3.53)
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e to Aq

Figure 3.7: The Flatland geometry for integration. Only the upper part of a
kernel reference ray is shown.

3.9.3 Approximating the Transfer Coefficient

With the same assumptions concerning the integration domain (the Sy, and
approach §), equation (3.44) can be rewritten over a homogeneous domain,

Fogo = D /g/é/lp/lqﬂodxdy
k 1

1<k <
7 // e da L oS L omdo T g gy (3.54)
R2
= qu0>
with the parameterization r = ||(z1, 2, Z3, Y1, Y2, Y3) — Wol||- In the following

derivation, we assume A, and A, being one-dimensional functions defined on
lines of a two-dimensional scene geometry (Flatland).

The parameters s and ¢ are the distance arguments of the functions 4,
and A,, respectively. The normals n, and n, are given by the average of the
normals of the neighboring simplices (see figure 3.7).

The radius r is derived from x and y as follows. Letting s and ¢ move on
two lines, the distance r from the center w, is

"= TIZJ T Tg with T?P;‘I} = f{QPaQ} + {87 t}2 - 2{87 t}f{p,q} - sin Qlpq}- (355)

Qpqy are the angles between the “surface” normals fg, ., and the vectors
£, = Wy — (Wo,1,Wo2) and £y = Wy — (Wo3, Wo,a) With fip gy = |[fp,3]], and £
and f, are the vectors between the centers of the surface RBF and the top and
bottom of the kernel RBF center (ray), respectively.
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Inserting equation (3.55) into equation (3.54)'® delivers an equation of the

form
REL o L = / / 6D s dt. (3.56)
R

with a polynomial Py(s,t) = —A, s* — A, t* + B, s+ B,t — C, and the substi-
tutions

Apgy = do 2+ dy (3.57)
Bpg = d, - fipgy - sin g g3, (3.58)
C = d, - (f3+ 1) (3.59)

With the common analytical solution

exp (& - C)v7
VA

/ exp (—A52 + Bs — C) ds =
R

equation (3.56) can be solved to

32 2
_p _a __
AFL_eXp(4Ap+4Aq C)m

pgo /_Ap \/qu

Switching to three-dimensional geometries can be assumed as integrating twice
over s and ¢ with different parameters but the same coefficients Ag, 1, Bp.q1,
and C. Thus, the non-constant arguments of the exponential function in the
solution (eq. 3.60) are doubled and the coefficients squared leading with sub-
stitutions (3.57), (3.58), and (3.59) to the following solution.

(3.60)

2 2
q

B

. exp (7 + 5= — O) n?
Ppgo = / / P25 g dt = —24r 2 (3.61)
R2 ApA,

3.9.4 Triggering Symbolic Integration

This section describes the estimation of the numerical error which is created
by integrating over an approximate ideal surface like described in the preced-
ing paragraph instead of over the triangles of the shading network separately
(exact solution). Depending on this error and on a related threshold, then, the
decision whether integrating numerically or accepting the symbolic integration
is made. On page 69, we begin the examination of four cases following the pos-
sible combinations of calculating the inner product or the transfer coefficient
by assuming a flat network and an infinite network.

13their two-dimensional equivalents
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Criterion for the Network Flatness

Figure 3.8 shows how the modification of the network geometry in case of an
approximate integration can be thought of. Thick lines stand for the existing
shading network topology in a Flatland environment, and the dashed lines
for the approximate geometry of a flat shading network which is implicitly
assumed when applying the symbolical integration algorithm.

shading network -
approximate geometry

Figure 3.8: Comparison of an example shading network geometry (in Flatland)
with the approximation by assuming a flat network (dashed lines). On the left,
the geometry for calculating the inner product, on the right, the geometry for the
transfer coefficient approximation are shown.

On the left hand side of figure 3.8, the determination of the inner product
of two Gaussians is shown. An approximate flat domain is implicitly assumed
by the direct connection of the Gaussians’ centers. On the right hand side, the
geometry for calculating a transfer coefficient A4, is drawn. In this case, the
network domains supported by the Gaussians each are assumed being the infi-
nite continuation of those areas (lines) which are defined by the RBFs’ centers
and their normals'®. Note that the approximate geometries are not explicitly
generated. Figure 3.8 only explains in which way an error is introduced into
the calculation.

Estimating the error must be based on those properties of the underly-
ing network, which are able, on the one hand, to easily be calculated on the
fly (during training the network and without requiring much computing re-
sources), and, on the other hand, which allow for calculation of an adequate
— at least, worst case — error estimate.

We define a parameter for the surface roughness, SR;, attached to each cell
c;. It figures a value for the roughness of the surrounding triangle structure.
Each time a sample is presented to the network, the SR; of the BMU (see
section 2.2.1) is calculated from the variance of the normals of the surrounding

!4 defined through training a shading network output layer (see section 3.2)
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simplices and it can be seen as an average angle over which the single patches
are rotated.

Since these roughness values are locally defined only, we add an algorithm
which computes an SR; which spans a larger environment of the shading net-
work, called fuzzy surface roughness, FSR;, as follows.

At certain time steps, the actual SR; of each cell is written into the cell’s
FSR; and interpreted like a potential. Then, this local amount is distributed
through the cell edges to the neighboring SR; with a certain strength. This
can be seen like letting a certain amount of fluid flow (diffuse) through tubes
(edges) of a certain thickness (strength factor), and it arises a mutual com-
pensation of the potentials between the shading network cells. The process
is stopped if the average flow (created by the potential difference) which is
propagated in the last step falls below a certain threshold.

The result (contained in FSR;) is a blurring of the SR; into the FSR; which
then denominate a larger area of the network and which are taken as approx-
imation of a local surface roughness which spans an environment extending
that of one cell only.

Criterion for the Network Support (“Existence”)

Similar to the roughness, the existence of the network is evaluated for each cell
when it is triggered as a BMU in the network training.

The existence of the underlying network is satisfied at those Gaussians
which lie, to a certain degree, far from a boundary of the shading network. To
determine this property, each cell ¢; contains a depth flag DF; which stores the
topological distance of the cell to the network boundary. To track the depth
of the cells, at the start of the network training (only one simplex exists), the
DF; of all cells contain the value 0 (boundary). Each time a new cell is inserted
at an edge, it inherits the smallest DF; of those cells which define the edge to
be split. If cells of the network are deleted such that new subnetworks arise,
then each of them is traversed from the newly arisen boundaries by updating
the depth flags.

Thus, with each A; a value of its depth in the network is stored serving as
a measure for its support on the network. If this support is complete, i.e., if
the A; lie sufficiently deep inside of the network, then the existence condition
is fulfilled, since the expansion of a Gaussian is proportional to the average
edge length of the surrounding edges.

We proposed the integration trigger as a boolean function of two parameters
DF,; and FSR, depending on which the algorithm starting on page 62 is steered.
The thresholds which decide if the accuracy of a symbolical integration would
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Figure 3.9: Example constellation for calculating the inner product of a pair
A, A

be sufficient are derived from the arising integration errors to be determined
in the following four sections.

Inner Product Error on a Flat Domain

Figure 3.9 describes the integration task arising in cases of finding the inner
product of two functions A; and A;. The integration domain of the network
is described by the infinite point set {x}, that of the assumed flat projection
by points {x}. 7; and r; denote the distances of the integration point X on
the network triangle from the Gaussian centers w;, w;. The definition of the
integration triangle (by its vertices) is not displayed.

The vectors n and n are the triangle normals which are taken for averaging
a cell’s normal and then used for determining the values SR;.

Regarding all parameters depicted in figure 3.9, calculating the difference
between the integrals over {x} and {x} is as difficult as computing the integral
itself. Thus, a simplification of the integration problem is required, which re-
duces the number of free parameters to one single angle of the normal variance
(SRs).

Taking care of keeping a worst case scenario and assuming that the inte-
gration error increases with the integral itself, the centers of the Gaussians are
set being identical maximizing the inner product. Furthermore, the center of
the integration area is placed at the center of the Gaussians and the triangle
is approximated by a slice. Since the error to be calculated is the ratio of the
difference to the correct value, we can neglect the factors of the Gaussians (the
output layer weights u;, u;), set the expansions d;,d; to 1 each and integrate
over a slice of radius 1.

In figure 3.10 this reduced problem is drawn in Flatland. Integration is
done over the dashed line {x} for the approximation case and over the thick
line {x} for the numerical integration. With the presented simplifications we
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Figure 3.10: Principle scheme for integrating over the network geometry (thick
line) compared to the approximate geometry (dashed line).

are able to create a function depending on one parameter o which stands for
the angle over which a patch is rotated.
The area integral over the flat domain ({x}) of the three-dimensional en-

vironment is
- 1 2\ 2
I = 7r/ (6_2T) dr
-1
2 2
=7 / e " dt, (3.62)
0

and with a = V1 + tan? « its exact value (integrating over {x})

Ty = 7r/a (6_2T2>2 dr

—a

2a
= 7 / e dt. (3.63)
0

With equations (3.62) and (3.63), we define the resulting error at a certain
cell ¢ given by the function & : R — R of the roughness value at that cell,
a = FSR;, like .

Er(a) = (Tey — Tr)?* /T2, (3.64)

Transfer Coefficient Error on a Flat Domain

Again, we create a constellation which, in practical cases, shows an upper limit
of the generated error. The shading network Gaussians are centered around
two integration patches p and ¢ (see figure 3.43 for example) and the transfer
Gaussian (the Gaussian of the kernel network) is set to reaching from the
center of Gaussian p to that of Gaussian ¢q. Further, since the expansion of the
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kernel Gaussian might be quite arbitrary compared to the shading network
Gaussians, we accept it being infinite which leads to a constant 1 instead
of a Gaussian, and thus, the third Gaussian in equation (3.43) is omitted.
The resulting integral approximation over the two assumed flat regions (use
figure 3.10 for both patches p and ¢ each by indexing x,%,r,7 with p and ¢,

respectively) is
B 1 pl a2
Ton = / / (e77) anar,
—1J-1
2

f 2
= o2 (/ e_tht> , (3.65)
0

and with @ = v/1 4 tan? « its exact solution
a a 2
— 7T2/ / (e_’"%_’g) drpdr,
vaa o\ ?
= 27? / e tdt | . (3.66)
0

The resulting worst case error for two cells p and ¢ where we assume o =
max(FSR,, FSR,) is
Eer(a) = (Tor — Tin)? T2 (3.67)

Inner Product Error on an Infinite Network

See figure 3.11 as an example. Now, we are interested in the relation of the
depth flag DF; and the error which arises if the inner product is calculated
approximately, i.e., if it exceeds the network boundaries. For simplicity a
straight shading network boundary is assumed (fg. 3.11).

To simplify the integration task, again, the centers of the two Gaussians
are set being identical, such that the integral becomes a maximum. The ex-
pansions d; are set to 1. Considering figure 3.11, the error is generated by the
integral taken at the outside region of the network (grey area), with the out-
side boundary assumed being a straight line at the distance DF; (i.e., d; - DF},
with d; = 1, since the depth flag is proportional to the number of triangles to
be passed to reach the boundary, and the diameter of a triangle approximates
d = DF;). The approximate integral at a cell ¢, which includes the integration
over the area exceeding the boundaries of the network (integrating infinitely)
is given by
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outside

assumed network boundary '\

Gaussian center O (distance from network boundary)

Figure 3.11: The range of a Gaussian is significantly exceeding the network
boundary. For the approximate integration, the error generated at the outside
region is calculated assuming a straight boundary (dashed line) with distance being
equal to the depth flag of a Gaussian, which is multiplied by its expansion.

Iy = / e~ 27+ g5 dt
R2

m
= 3 (3.68)

and the absolute error is defined by the integral from the beginning of the
boundary at the distance 6 = DF; to infinity,

IRI = / /6_2(52+t2) ds dt
) R
™

2 V2,
= (1= - . :
y =) et (3.69)

From equations (3.68) and (3.69) an error term can be derived like

gDI(d) = Ilgu/I]gI' (370)

Transfer Coefficient on an Infinite Network

The same assumptions like in the last paragraph (omitting the kernel Gaussian)
is applied here, and leads to the approximation of the transfer coefficient like

Tor = /e‘sz_tz_“L”2 ds dt du dv
R4
= 7 (3.71)
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Figure 3.12: On the left side, the errors generated when calculating the inner
product and the transfer coefficient approximately regarding a particular roughness
value (tan alpha with « is the average angle over which the triangles in the near
environment are rotated, the inner product curve is scaled by a factor of 300 to
fit into the diagram). The same on the right side regarding a certain depth of a
Gaussian in the shading network.

The absolute error if the Gaussians p and ¢ exceed the shading network to the
same degree is

Ter = / // /6_52_’52_“2_”2 ds dt du dv
s JrJs JR

(2 /Ozﬁdt_lf (372

and the relative error term follows like
Eor(0) = T2, /T2, (3.73)

In figure 3.12 a plot of the four different error functions is shown. On the
left side, the two functions &g (eq. 3.64) and Exp (eq. 3.67) are drawn. They
show the error for calculating the inner product and the transfer coefficient,
respectively, related to a particular roughness value.

The right side of figure 3.12 shows the errors for approximating the inner
product &y, (eq. 3.70) and the transfer coefficient £, (eq. 3.73) in relation to
a particular depth value in the shading network.

It can be seen that the errors are very small and the thresholds for the
angle and the depth can be chosen very generously, leading to the avoidance
of the costly numerical integration in almost all cases.
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Chapter 4

Application

The content of this chapter is divided into two parts. First, we focus on the
approximation of the kernel BK, second, the base function distribution derived
from the shading network is discussed.

The parameter settings determined from the following experiments are de-
scribed in section 4.4.1.

4.1 2D Kernel Approximation

The kernel of a three-dimensional environment is a 4-dimensional function
over six-dimensional rays. For visualization reasons, in this section, we refer to
two-dimensional environments where surfaces change to edges and the three-
dimensional space to just an area on which the edges define the flat scene
geometry. Thus, radiosity changes to a one-dimensional and the kernel to a
two-dimensional function describing the interaction between two line points.
Heckbert [26] called this constellation Flatland and introduced a parameteri-
zation of the edges which helps to visualize the kernel in an intuitive way. In
this parameterization, the edges of the scene are represented by consecutive
sub-intervals of the interval [0,1]. A parameter value s € [0, 1] uniquely iden-
tifies an edge and a point on it. A pair of points as required for the kernel is
given by two parameter values s and ¢. Thus, the kernel is a real function over
the unit square in the s-t-coordinate system. The assignment of the edges to
intervals is arbitrary.

According to that, the goal function to be approximated by an ISGCS is
defined as two-dimensional function accessible by two parameters s and ¢. Its
tasks are, first, it delivers the de-parameterized two-dimensional points x and
y (see figure 1.1) related to s and t, second, it calculates the geometric term
G and the visibility relation V', and third, it weighs them by the emittance F,
defined with the scene definition, and a recent radiosity approximation value

75
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"wall"

"floor"

(a) (b) (c)

Figure 4.1: A two-dimensional example geometry (a), its kernel (b), and an
example discretization done by the hierarchical radiosity approach.

B®)(x) at x which is taken from the shading network (see also section 3.4).
The resulting value V(x,y)G(x,y)B®(x) is taken as an i™* sample sz(-k) for
the training of the kernel network. At the initial state and in the following
examples we assume the pure emittance as radiosity approximation, which is

equivalent to the first shot of energy.

In the following, we draw the two-dimensional kernels as black-and-white
pictures. A bright grey value stands for a small kernel value, dark points
denote high values.

We accomplished the following approximation tests with two different Flat-
land geometries shown in figure 4.1.a and figure 4.6.a. The kernel goal func-
tions are drawn in figure 4.1.b and figure 4.6.b, respectively. Consider the
high-valued area in figure 4.1.b in the center of the picture. It results from a
high kernel value at the lower left corner of the geometry in figure 4.1.a and
features the chosen parameterization, beginning with the value 1 at the up-
per end of the vertical edge (“wall’) and ending at 0 at the right end of the
“floor” edge. The wall is defined as light source. The floor has also assigned
a moderate amount of emitting light, mimicking the approach in an interme-
diate state where energy has already been reflected to be repropagated in the
environment. Consider the upper left quarter of figure 4.1.b which is similar
to its lower left. They differ in their brightness and orientation and might be
interpreted like the portion of light energy emitted from the floor to the wall in
contrast to the lower right quarter denoting the energy emitted from the light
source to the floor only. The same holds for the geometry from figure 4.6.a,
which has its light source defined at the ceiling edge. Consider the blocking
edge compared to its respective sharp edged shape arising in figure 4.6.b.
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Hierarchical Radiosity and its Kernel Representation

Figure 4.1.c and figure 4.6.c show the discretization of the kernel, if it is cal-
culated by an hierarchical radiosity approach. We continue this chapter by
comparing our results with the HR approach, due to the fact that it is most
similar to the presented one since it also focuses on the search for a com-
pact representation of the kernel explicitly (see also section 1.4). A constant
hierarchical base has been used through all the tests.

An ideal compact representation of the radiosity kernel could theoretically
be found by a standard compression algorithm applied to an instance of a
kernel calculated to its full accuracy at “each single” domain location. Since
this is generally not practicable, approximation methods which do not need
to have full access to the complete goal function are required for radiosity.
The compression method used in HR assumes a set of initial arbitrary average
values over the kernel domain. Each integral of a portion of the domain defined
by a pair of separate surfaces of the geometry is calculated and taken as average
of the underlying kernel piece. This value is denoted the transfer coefficient
of a link between the two patches. These initial links are predetermined and
thus arbitrary. The HR approach starts on the initial subdivisions of the
kernel and adaptively refines links into sets of finer links which approximate
the underlying kernel domain on a more granular level.

A certain criterion, called oracle, determines if a particular link needs to
be subdivided, and it is commonly based on the energy which is transferred
by the according link (the value of the transfer coefficient), and/or on an
estimation of the coherence of the kernel function inside of the domain related
to that link. The degree of coherence is approximated by the number of those
rays, randomly “shot” inside of that domain, which are occluded by a blocker
between the corresponding pair of patches.

The oracle directly determines the resulting efficiency of the kernel, and it
is obvious that the mentioned HR oracle is only suboptimal in its compression
capabilities.

Figure 4.1.c shows an example discretization of the geometry where block-
ing effects do not arise. It can be observed how the oracle subdivides the kernel
at the high-energy areas, at the corner of the edges. Each block in the kernel
representation outlines a link of HR. At figure 4.6.c also the zones with a high
transfer coefficient are represented by a finer link resolution, but additionally,
links which “carry a blocking effect” have been detected by the coherency part
of the oracle, and thus, they have been subdivided at a finer level.

Figure 4.2 displays an example solution of an HR approach of the geometry
from figure 4.1.a. Figure 4.2.a is the computed discretization and figure 4.1.b
the approximation of the kernel goal function, repeated in figure 4.1.c. For the
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Figure 4.2: Discretization of the kernel from figure 4.1.a done by the hierarchi-
cal radiosity approach (a), the calculated transfer coefficients (b), and the goal
function (c).

generation of figure 4.1.b the transfer coefficients of the links corresponding to
each block are divided by the area (length) of the corresponding patches and
drawn as grey values.

-

(a) | (b) (c)

Figure 4.3: In the middle, the approximation of the kernel from figure 4.1.b by just
11 Gaussian RBFs. The RBFs are drawn in (a) as large points, and the generated
samples as small points. (c) shows the distribution of RBFs drawn as rays into the
geometry.

Approximation without Blockers

Figure 4.3 shows an example approximation by the presented ISGCS approach
of the geometry from figure 4.1.a. On the left, the black points mark the centers
of the radial basis functions of the kernel network — the reference rays. They



4.1. 2D KERNEL APPROXIMATION 79

(a) (b) (c)

J d h

(d) (e) (f)

Figure 4.4: Snapshots of a complete learning process of the geometry from figure
4.1.a. At the top, the distribution of Gaussian RBFs from the beginning (a) to
the end (c), at the bottom, the according plots of the kernel approximated by the
kernel network.

stand for the discretization by the ISGCS approach and, in the following, they
are compared with the links of the HR approach. In the middle of figure 4.3
the approximation of the kernel through the network is plotted. Figure 4.3.c
shows a different representation of figure 4.3.a — the network function centers
drawn as reference rays into the geometry.

Figure 4.4 presents approximations of the kernel through different numbers
of reference links each, and these results are compared with the corresponding
discretization by an equal number of HR links shown in figure 4.5.

The number of links for figures 4.4.a and 4.4.c and figures 4.5.a and 4.5.c
from left to right are about 16, 100, and 500 and the resulting root mean
squared error (RMS) has been calculated to 0.3%, 0.1%, and 0.07%, respec-
tively, which lies about 30% below that of the HR approach for the equivalent
number of links (see figure 4.8.a).

On a 180 Mhz, MIPS R5000 CPU, the time required for the solutions from
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Figure 4.5: Discretization of the kernel from figure 4.1.a by the HR approach.
Each block relates to a certain link.

figure 4.4 is about 10 seconds (figure 4.4.a), one minute (figure 4.4.b), and five
minutes (figure 4.4.c). These results show this approach’s facility of finding
rough and fast solutions better than exact solutions of complex scenes. See
also the discussion in section 4.4.

Links versus Samples

There are two obvious criteria which describe the quality of a radiosity ap-
proach adequately — the compactness of the generated approximation model
(for example, the number of links), and the number of samples required for its
generation. Whereas the first determines the amount of storage space needed
for memorizing the kernel, the second shows its main effect on the computing
time. In HR, the number of samples drawn from the geometry commonly is
proportional to the number of generated links. Each link requires a set of
about 10 to 200 test samples to determine the visibility information between
the corresponding pair of patches.

The ISGCS algorithm creates reference cells which directly correspond to
the number of underlying samples. Thus, there is a strong correspondence
between the number of samples and the number of links for both approaches.

Tests have proven that a ratio of 10 of samples per generated links is
sufficient in almost all cases. In ongoing comparisons we concentrate on the
number of links only, keeping in mind that the number of required samples is
not higher than that of the HR approach.
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Figure 4.6: In (a), a geometry with a blocking edge between the light source
(ceiling) and the floor. In the middle, the according kernel, on the right, an
example HR discretization.
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Approximation with Blockers

Approximating the kernel of a geometry which contains a blocker shows sightly
different results. In figure 4.6 it can be observed that the shape of the kernel is
characterized by a sharp edged band coming from the blocker effects between
the light source, the ceiling patch, and the floor. Approximating this band
requires a high resolution of reference cells or HR links as, for example, figure
4.6.c shows.

Figure 4.7 shows a result for the ISGCS approximation. Remarkable are
two observations. First, to get a moderate approximation accuracy, in this
case, just 11 links are sufficient (see figures 4.7.a and 4.7.d). The approximation
error for this compact representation is half of that for the equal number of
links in HR.

The described results are summarized in the diagrams of figure 4.8. On the
left hand, the comparison between the first geometry is plotted, on the right
hand, the comparison related to the blocker geometry. Besides the approxi-
mation capability, the fast convergence is remarkable even for a small number
of links (see also figure 4.7.d). In early stages of the computation, the error
lies significantly below that of the HR approach (up to 60%). This proves the
practicability of the algorithm especially for fast initial approximations of the
solution. Even this fact emphasizes the advantages of this work concerning
huge geometries. Execution times go from a low of ten seconds for few cells
on the left side of the diagrams up to about 20 minutes for the final solution
with about 800 cells, on a 180 Mhz, MIPS R5000 CPU.
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Figure 4.7: Snapshots of a complete learning process of the geometry from figure
4.6.a. At the top, the distribution of Gaussian RBFs from the beginning (a) to
the end (c), at the bottom, the according plots of the kernel approximated by the
kernel network. Execution times from the left to the right side are 5 seconds, 120
seconds, and 20 minutes on a 180 Mhz, MIPS R5000 CPU.

4.2 2D Shading

Surfaces in Flatland are edges, and the one-dimensional shading network can
be seen like a string of Gaussian radial base functions. Figure 4.9 shows the
floor patch of figure 4.1.a with the centers of links/RBFs drawn as short bar.
Consider the distribution of them. The bottom line has been generated by
a typical HR subdivision. The middle line shows the distribution of the end
points of reference rays of the kernel approximation. It can be observed that,
although this kind of distribution might be the best solution of matching the
results of the kernel training onto the surfaces, the distribution lacks of regu-
larity which makes it difficult to get a reasonable function base like mentioned
in section 3.2. Moreover, there is no overlayed structural information available,
like the direct neighborhood of each center which could define the expansion



4.2. 2D SHADING 83

Number of links/RBFs Number of links/RBFs
[
0.5 0.5
0.4 0.4
0.3 BJ) 0.3 BJ)
’ = e =
020y 02} ® HR
HR ¥er .

0.1 ° 0.1 o

GCR L °
0 0

100 200 300 400 500 600 700 100 200 300 400 500 600 700 800

Figure 4.8: Comparison of the kernel MSEs generated with the ISGCS approach
and with the HR approach in Flatland. (a) shows the kernel approximation error
of the geometry from figure 4.1.a (no blockers), (b) that from figure 4.6.a (one
blocker).

of the corresponding RBF.

In contrast to that, the top line displays the distribution of the shading
network, which is developed based on the samples generated by training the
kernel network. It is much more regular and it also accounts for the energy
distribution. The resolution increases going from right to left from lower to
higher energy (see the high energy corner in figure 4.1.b).

It can also be observed that the distribution on the right side is slightly
higher although energy decreases here. This is related to the boundary match-
ing of the ISGCS network explained in section 2.5.

Figure 4.10 shows the results for the distribution of radiosity bases from
the shading network concerning the second geometry which contains a blocker.
Again, only the floor edge is drawn, and the blocker boundaries are marked
with two horizontal lines. Remarkable is the matching of the distribution with
the boundaries of the blocker. According to a higher ray end point distribution,

Figure 4.9: The floor edge of the geometry from figure 4.1.a (without blocker),
from top to bottom, the center distribution of the shading network, the kernel ray
end point distribution, and the classical subdivision derived from the HR kernel.
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Figure 4.10: The floor edge of the geometry from figure 4.6.a (with blocker
boundaries marked by the horizontal bars), from top to bottom, the center dis-
tribution of the shading network, the kernel ray end point distribution, and the
classical subdivision derived from the HR kernel.

drawn in the middle, the resolution of the shading bases is more granular than
at the shadow positions of the patch. Although this can also be observed
at the bottom of the figure for the HR solution, here, the resolution is much
more restricted to the kernel shape and matches the final shading requirements
slightly worse.

4.3 3D

A

"light source"

“wall"

*floor”

(a) (b) ()

Figure 4.11: Example scene (a,b) and the radiosity solution (c) calculated by the
ISGCS approach.

Sections 4.1 and 4.2 have proved this work’s capabilities in case of two-di-
mensional environments. Kernel training results have been exposed through
two-dimensional pictures of grey shades. Going from Flatland to realistic
three-dimensional scenes, the kernel changes to a four-dimensional function of
two points in three-dimensional space, and since an adequate two-dimensional
visualization technique is hardly available, we mainly discuss the approxima-
tion error which arises during the kernel training and the triangulation derived



4.3. 3D 85

from the shading network representation.

Figure 4.11 shows a test geometry of two perpendicular planes, a “wall”
patch and a “floor” which are illuminated by a light source from the top.
Figure 4.11.c shows a solution calculated with the ISGCS approach. Instead
of visualizing the kernel representation, figure 4.12.a shows the distribution
of receiver points of the sample rays which are generated during the kernel
training. It is proportional to the distribution of reference rays in the kernel
network (not displayed) and proves that end points of rays focus on locations
with a high energy distribution.

As mentioned, the end points of the kernel samples are used for the training
of the shading network, since these pay most attention to the final intensity
bleeding on the patches. An example network like in figure 4.12.b is generated
simultaneously to the kernel training. Figure 4.11.c shows the shading which
is generated by a final triangulation path explained in the following section.

4

(a) (b)

Figure 4.12: Kernel training sample distribution (a), shading network topology
(b), and the re-triangulation (c) of the geometry from figure 4.11.

4.3.1 Triangulation

Since the shading network model generally forms an adequate triangulation of
the underlying data set (see section 2.2), it seems obvious to apply it directly
as triangulation of the surface space. Nevertheless, considering figure 4.12.b,
it is quite clear where the problems of such an algorithm would arise. Since
the network shape is generally an approximation of the underlying domain, it
is not suitable for a realistic rendering of the geometry. Figure 4.12.b exposes
the problem of the under-representation of boundary regions by the network’s
clustering capabilities referring to section 2.5. Further disadvantages are de-
scribed below. As result, a re-triangulation like in figure 4.12.c is needed,
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(a) ()

Figure 4.13: In (a), the linear radiosity function base is used for triangulation
and calculation of intensity values on the shading network cell centers (vertices in
figure 4.12.b). In (b), vertex intensities generated by re-triangulation are calculated
from the radiosity base. (c) neglects the base and computes the vertex intensities
through a final “collecting” step through the kernel approximation model.

which adopts the discretization determined by the shading network. Consider
the following algorithm.

The original surfaces are subdivided recursively. In case of a quadrangle,
its center point is calculated and four new quads containing the new point are
generated, whereas the originating one is deleted. The algorithm is repeated
with the four newly generated quads until the size of a subpatch approximately
equals the size of the simplex of the shading network which lies closest to it.
In this work, a reference point of a particular subpatch is determined and a
reference edge like the diagonal is compared to the average edge length of that
cell which matches best the reference point (the best matching unit, see section
2.2).

In other words, the patch is subdivided as long as it is larger than the
underlying simplices of the shading network.

4.3.2 Shading

The radiosity base presented in the preceding chapters serves for the light
flow FEM simulation and for the updating of the samples selected from the
geometry. For rendering purposes, it seems obvious to derive the radiosity
directly from this base creating the possibility of calculating arbitrary points
on the surfaces.

Figure 4.13.a shows such a solution. The radiosity is evaluated at each cell
center and the network is directly used for the triangulation. In contrast, figure
4.13.b shows the results after the described re-triangulation. Radiosity values
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Figure 4.14: Approximation accuracy of the ISGCS kernel model if compared
with the kernel of the HR approach for equal numbers of links/RBFs and for two
different geometries without blockers.

are computed at each of the generated vertices, and expose, that, although
the base’s accuracy in terms of a particular error criterion might be sufficient
for the FEM, it is not well suited to satisfy one’s demands of a realistic color
bleeding. Difficulties arise, on the one hand, with the small distribution of
bases at certain locations, on the other hand, with the infinite support of each
of the base components leading to the downy look of the radiosity shading.
Thus, for the final rendering, we neglect the base and instead propagate the
energy once again through the kernel approximation onto each of the vertices,
resulting in figure 4.13.c. The method is common to the most classical radiosity
approaches and it is known as a final collection path to the geometry vertices.

The diagram on the left hand side of figure 4.14 exposes the calculated error
in approximating the kernel network if compared with a hierarchical radiosity
approach. Remarkable is the small error even in case of few cells (below 200).
The right hand diagram shows the error for another example model of two
perpendicular planes, one of them defined as a light source. Execution times
go from a low of ten seconds for few cells on the left side of the diagrams up to
about 42 minutes for the final solution with about 1400 cells, on a 180 Mhz,
MIPS R5000 CPU.

We follow up with two example geometries containing two blockers, each
shown on top of figure 4.15 and in figures 4.19.a and 4.19.b. Figure 4.15.d gives
an example of the network cell distribution, figure 4.15.e the triangulation, and
figure 4.15.f the final shading of the solution.

The errors compared with the HR approach are plotted in figure 4.16.
Execution times are nearly similar to that from figure 4.14, since they mainly
depend on the number of generated links. The size of the error is about half
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Figure 4.15: A geometry with two blockers (a-c). (d-f) show the shading network
topology, the triangulation, and the final radiosity solution, respectively.

of that of the HR approach.

4.4 Results, Discussion

4.4.1 Parameter Settings

In figure 4.17, we list some typical parameters which were used for the network
training in the preceeding sections. It has been shown that suitable param-
eters often depend on the geometry under investigation. Choosing “slightly”
wrong parameters led to a slower learning rate, in almost all cases. Of course,
parameters which differ strongly from the listed ones led to a collapse of the
network training, generally, i.e., in these cases, the ISGCS is not longer able
to create a consistent structure over the input sample domain. In [8], these
effects have been investigated in several experiments for the two-dimensional
case. The parameters’ ranges listed in figure 4.17 can be taken as robust clues.
Additionally, consider the following application rules.
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Figure 4.16: Approximation accuracy of the ISGCS kernel model compared with
the kernel of the HR approach for equal numbers of links/RBFs and for two different
geometries with blockers.

e Taking the number of cells which have been inserted in the kernel network
as a termination condition has shown practical benefits in almost all
cases.

e The insertion counter of cells A in the kernel and the shading network
were always kept equal.

e The triggering of the FEM integration calculations is done after each
completed insertion of about 20 to 50 cells in the kernel network.

e Thresholds for the roughness of the network and the depth of a cell in the
network to decide if an analytical integration is sufficient can be chosen
generously (0.4 and 1, respectively), due to the small arising error (see
figure 3.12).

4.4.2 Practicability, Problems

We have been proving the validity of the whole approach, but, admittedly,
there are some difficulties in applying the method to arbitrary geometries.
We summarize these handicaps, in the following, then, in section 4.4.3, we
summarize the error sources of this approach.

Topology Preserving Networks

Consider figure 4.18. It shows the problems which arise from the adaption of
a two-dimensional network to the surfaces of the scene. Figure 4.18.a is an
example for the case where network cells are not deleted at the right time (see
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‘ Parameter ‘ min ‘ max ‘ Description ‘ Page ref. ‘
€amu 0.01 | 0.05 | Weight vector adaption strength for a 21

BMU.

EN 0.001 | 0.009 | Weight vector adaption strength for 23
the direct neighbors of a BMU.

Q 0.01 | 0.05 | Decreasing rate of the resource terms 29
7ot and 75

n 0.01 0.1 | Learning rate of the output layer. 22

w 0.4% | 0.6% | Average resource percentage for the 32
threshold for being a high resource
cell.

€ 0.001 | 0.01 | Deletion threshold for the resource 31
term 7; of a cell ¢;.

A 300 600 | Number of iterations before a new cell 31
is inserted.

K 400 | 1000 | Number of iterations before a possible 31
deletion of cells is tested.

% 0.4 0.6 | Threshold which decides if an input 32
sample £ is inside of a network. It is
tested against the network activation

Figure 4.17: Recommended parameter settings.

section 2.3). The network is spread over the gap between the wall and the
floor. This happens accidently depending on not sensitively chosen training
parameters. The error which is added to the radiosity base is exposed in figure
4.18.b.

The example also points to another problem. There is no sufficient criterion
for modeling the surface boundaries of the goal geometry. The model virtually
“sees” a distribution of points in space from which no information about the
affiliation to surfaces can be derived. On the one hand, this fact is desirable
for curved surfaces or patch clusters which describe a unique surface, on the
other hand, edges in the geometry are not sufficiently accounted for. Some
sort, of “breaking operator” which splits the network into several independent
pieces at these edges would be necessary.

Generally, the topology preserving facilities of the ISGCS network hinders
a completely free adaption to the underlying sample distribution. Even the
training parameters essentially influence the final approximation result, more-
over, in some cases, they depend on the scene geometry.

These problems are obviously visible for the two-dimensional shading net-
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(b) ()
Figure 4.18: Example problems arising from the ISGCS approach, which originate
the topology preserving features of the ISGCS network.

work but they also arise in the four-dimensional kernel network observable
through the slight discontinuity of the sample distribution, for example, in
figure 4.18.c.

(a) (b) (c)

Figure 4.19: Example for the lack of approximation capability for a highly varying
kernel (in case of blocking effects).

Kernel Approximation Accuracy

As mentioned, the presented supervised function approximation model shows
its drawbacks when modeling functions with sharp variations. Thus, shadow
generating blocking effects are less likely to be represented through an RBF
network. The radiosity solution (fg. 4.19.c) of the geometry described in figures
4.19.a and 4.19.b visualizes this effect. Here, the virtually sharp edges are
bleary and do not model the expected shadow boundaries sufficiently.
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Time Resources, Complexity

The kernel approximation clearly outperforms the HR approach in its accuracy
for a certain number of network cells versus the same number of links. The
complexity of the approach equals O(z - 22) with 2 as the number of cells in
the shading network and z as the size of the kernel network.

On the one hand, this is worse if compared with GR and HR, on the other
hand, by the avoidance of initial linking through clustering, an outstanding
small amount of time for a fast rough solution with up to several hundreds of
network cells even for huge geometries is possible. In this case, it outperforms
classical approaches — rough solutions even for millions of polygons are pos-
sible in a few minutes. These solutions can be taken as a first estimate but
also to support classical approaches with information about clusters in the ge-
ometry or to deliver a basic triangulation usable as discretization for an exact
classical approach.

Besides the issues of complexity, the time needed to calculate a rough
solution, where the networks consist of up to 100 cells, lies in a range of 10
seconds to few minutes. This is comparable with the HR approach for the
presented test scenes. Time resources rise drastically if an exact solution or a
more complex scene is required to be calculated. Basically, this results from
the network training time and is a common problem of almost all approaches
using neural networks.

4.4.3 Error Summary

Errors in the computations of this approach arise in four ways — first, in
the approximation of the kernel by the kernel network, second, in the usage
of an additional surface function base, third, in the short-cut of using the
analytical integration of the transfer coefficients and the inner products instead
of the numerical exact solution, and fourth, in the difference between the scene
geometry and the SN geometry which mimics the scene geometry

The first and the second errors seem to be identical with classical ap-
proaches, where, on the one hand, a surface base generates an error, due to
the inaccuracy of modeling the radiosity function, and on the other hand, there
is also an defective approximation of the kernel by the tensor product base of
the surface base.

In fact, classical approaches do not have an additional error infusion since
the kernel base is the tensor product base of the radiosity base, and thus, trans-
fer coefficients exchange energy between a pair of radiosity base components
without a loss of accuracy'.

Lexcept for the error arising from the numerical calculation of the transfer coefficients
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Kernel Error

The error of the kernel approximation, in this work, has already been docu-
mented in, for example, diagrams of figure 4.8 and of figures 4.14 and 4.16. It
converges (which has been shown in section 3.5) to an MSE between 10% and
40% depending on the presented test geometries, i.e., on the scene complexity.
In these simple test cases, the presented approach outperforms, for example,
the HR approach, significantly, whose error amount is about as twice as large.

Surface Base Error

Whereas in classical approaches, no additional error is introduced by the ap-
plication of a surface base, this work uses a different function base to represent
the radiosity on the surfaces — the Gaussians of the shading network (SN).
Assuming the SN itself as the geometry under investigation?, we add the error
of the Gaussian base in representing a constant as a bias to all further con-
siderations®. Figure 3.4 demonstrates that the surface base’s error is about
10%.

Integration Error

An integration error is introduced by assuming the analytical solution instead
of the numerical solution when calculating the inner products and the transfer
coefficients of the radiosity base. By assuming the decision technique from
section 3.9.4, which avoids accepting the analytical solution if it is inaccurate,
the creation of an integration error is limited to only few cases where it is
neglectable small (see diagrams from figure 3.12).

Geometry Error

The geometry error is characterized by two effects.

e The case that the shading network parts do not support the given geom-
etry (for example at geometry rifts where the network covers domains
which virtually do not exist), or the case that the network models sharp
edges of the given geometry S not exactly.

e The inaccuracy stemming from the fact that we assume the shading
network domain S as geometry under investigation, and then, for final

2and thus, ignoring the error which comes from the fact that the initial geometry defini-
tion is not identical to the geometry created by the shading network

3This is a rough approximation of the error of a Gaussian base, but considering the
following more fatal errors, this approximation should be reasonable.
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shading the SN is evaluated at the originating geometry surfaces S. In
other words, virtually, the shading base is only valid for points lying on

S.

Overall Error

On the one hand, accumulating the overall effects of these errors is difficult,
since it is hardly possible to analyze the geometry error in a reasonable way.
On the other hand, the geometry error is the one with the biggest effect on the
intuitive quality of the whole approach. Assumptions can not be accomplished
adequately when using large geometries, moreover, from practical experiences,
we assume the geometry error to be very large if the geometries become com-
plex. This comes from the fact already mentioned that the ISGCS are hardly
capable of mimicking geometric objects in a sufficient accuracy.

The effects will be visible in the case of discontinuous function shapes,
like shadows?. Besides its physical correct simulation of the light flow, people
commonly judge quality through looking at sharp shadows, and the impression
of the error occurring at these discontinuous locations is intuitively essentially
higher — the physical correctness does not count in such cases.

Thus, we refer to the general practicability discussion on the subsequent
pages, and summarize here the known errors by applying the technique from
section 3.5, i.e., from [2]. Neglecting the geometry error, we add the described
surface base errors to the kernel approximation error® which is increased by
50% at average and thus, nevertheless, it lies significantly below that of the
HR approach.

4.4.4 Practicability, Benefits

Despite the presented issues from the preceeding paragraphs of a large geo-
metric error, problems in calculating complex geometries, and long execution
times, we consider the following benefits.

Main advantage of the ISGCS approach is its flexibility and generality aris-
ing from the development of an approximation method which is derived from
a neural network algorithm. The two networks, for the kernel representation
and for the discretization of the radiosity function, are trained independently
from each other.

This is generally different if compared to classical approaches, since there,
there exists a fixed connection between the kernel and the radiosity representa-
tion — via the approximation of the kernel by the radiosity base components’

4in the kernel and in the surface function representation
Sthe perturbation error in [2]
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tensor products. Thus, in the presented approach, there arise a novel topolog-
ical freedom in developing the discretization of the radiosity equation.

Another practical benefit arises from the capability of easily predetermining
the up-running computing resources by simply choosing limits for the network
sizes and letting the algorithm run until these limits are hit. The aspired
maximum kernel storage or the number of polygons which should finally be
created (for example to match the limitations of a real time application) may
be criteria. This is an advantage if compared to classical approaches where, due
to the indirect effects of the available parameters, it mostly has been difficult
to determine the resulting resources easily. In HR, for example, an energy
criterion for the kernel representation determines the final number of polygons
for the shading.

Finally, advantages arise from the fact that the kernel model is memorized
in the network representation. This enables an easy and fast reiteration of
both networks. A quick adaption is possible and provides the possibility for
incrementally retraining slightly changed geometries like dynamical scenes.
Rays which are effected by changes in the geometry trigger a local resampling.
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Chapter 5

Conclusion

Growing cells radiosity (GCR) presents an approach which combines Monte
Carlo like sampling with the finite element scheme for solving the radiosity
integral equation. A new artificial neural network is developed which is capable
of efficient function approximation, and it is adapted to mimic finite elements
through its topology, suitable for an FEM radiosity algorithm.

Emphasis is laid on abstraction from geometric objects, generally, to be able
to freely develop a compact storage model of the light flow through a neural
network representation. Through examining the geometry by sampling instead
of accounting for discrete polygons, the neural network’s outstanding clustering
and function approximation facilities are utilized for an efficient representation
of the energy flow in the scene. This representation is instantiated by a linear
function base of six-dimensional Gaussian radial basis functions.

A second network of similar type approximates the scene geometry. From
the internal structure of both networks a finite element representation is de-
rived and an FEM computation executed simultaneously, in order to update
the radiosity during the training process. Due to the homogeneous structure
of both networks, the integration operations required for the FEM calculation
are accomplished analytically.

During the learning process and the concurrent FEM computations the
geometry network approximates the actual results of the radiosity computation
in terms of a linear base of three-dimensional Gaussian radial basis functions
with local expansion but infinite support of the geometry.

Advantages. The algorithm runs completely without accounting for surfaces
or geometric objects at all. Based on the radiosity network, a triangulation of
the scene can finally be derived in a straight-forward manner. Thus, avoidance
of initial linking and an ideal clustering of the light flow arise. It enables, prin-
cipally, to calculate geometries of arbitrary sizes similar to pure Monte Carlo
approaches. Additionally, due to the interpolation facilities of the approxi-
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mation networks, the approach is capable of calculating fast, rough solutions
without the classical noise effects, and moreover, an efficient non-redundant
importance sampling method is presented.

The final representation of the radiosity by a base of Gaussian radial basis
functions enables a smooth color bleeding on the surfaces with a very small
number of base components.

The kernel and the representation of the radiosity function are stored in a
flexible, adaptive data structure of a neural network. If compared to conven-
tional approaches, a new degree of topological freedom has been shown by the
iterative development of the discretization of the radiosity equation. There
are no limitations in modeling the geometry through surface base components,
like there are no restrictions in approximating the kernel function, due to the
fact that the usual connection of both representations via the tensor product
base is not existent.

The flexible data structure even enables a reiteration of an already ex-
isting solution and thus provides the possibility for an incremental radiosity
approach.

Problems. One the one hand, like almost all adaptive approximation ap-
proaches of this kind, the algorithm ideally accounts for smooth transitions of
the goal function. In contrast, high variances in the light flow which result
in sharply bounded shadows can only be represented with a high amount of
computing resources. On the other hand, fast and rough solutions are eas-
ily possible, and thus, one way of benefitting from this approach could be to
make an analysis about the training behavior and the preliminary results to
support classical approaches with information which helps making preliminary
decisions concerning an efficient meshing, for example.

Additionally (concluding from the section 4.4.3), the geometry approxima-
tion by a neural network is questionable due to the inflexibility of the network
in case of modeling virtual geometries, generally. Thus, this work should be
seen from a more or less idealistic, academic point of view. Practical appli-
cations for realistic geometries are not recommended even due to the long
training times of the principal ISGCS network.

In the author’s opinion, the main attraction of the presented scheme is
its generality — two general goal functions (the kernel and the radiosity) are
approximated by a general artificial neural network, and thus, the approach is
able to profit from the typical outstanding neural network features of analyz-
ing arbitrary data distributions. It results in an radiosity approach which is
independent from the geometry and from the definition of fixed surface base
functions — these are generated in a fluent, smooth adaption of two neural
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networks from which later the final radiosity is derived. Thus, this approach
is new in its kind of thinking of geometry, generally, it turns the light flow
in a self-organizing, esthetic conglomerate of neural networks which automat-
ically and autonomously learn the complex geometric relationships — there
is is no need for adapting and converting the initial geometry or for making
assumptions like discontinuity meshing to keep computing resources small.

Growing cells radiosity, in its entirety, can be seen like a special designed
neural network for solving the radiosity problem in a self-organizing, automatic
manner.
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Appendix A

Mathematical Derivations

A.1 Integrating over R* in R’

In sections 3.6.1 and 3.8, integration over a two-dimensional function f is
required. According to the general substitution rule for a one-dimensional
function f : R — R with a parameterization g : R — R,

~Hz2) 0
g
sd= [ " o) s
/ (iv1) 85
there exists its two-dimensional analog,
z2 Y2
/ / f@,y) de dy =

1 Y1

~(z2) 1(yz
/ / t), h(s, t))f;(é : i’)) dsdt (A1)

! (y1)

with f: R? - R, g,h: R — R, and the Jacobian [10, 16]

2] o)
d(s, t) oh on | ’
s ot

The required bijectivity of the substitution (eq. A.1) implies a quadratic
shape of the Jacobian, which is not given in this work. Here, a two-dimen-
sional function f is defined on an area in R® described by three separate
parameterization terms x, 7o, 73 : R2 — R, forming a vector parameteriza-
tion x : R?2 — R3, x(s,t) = (z1(s,1), 7a(s,t),73(5,%)). The Jacobian of this

parameterization, agxt) = a(xg(’:%ms), would be € R® x R2.
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To create a quadratic form of the Jacobian, one way is to introduce a third

variable u, and a replacement of the parameterization x by X : R® — R?,

defined like
9x ox

X

ds ot

Ix , Ox
with the normal |ax7x6x” of the area spanned by 3 ax and 6" and the quadratic

Jacobian

_0X | ex ax  FxE

(s, t,u) s ot [[GexBE]l
which is equivalent to the triple product of g’s‘, %’t‘ and g’s‘ X £ — the differen-
tial volume element when integrating over s,t and u — divided by H 2= X —H

The division leads to a normalization in the “u-direction”, and since this di-
rection is “orthogonal to s and t”, du does not affect the result. It follows that
for an integration over the area at u = 0,

ox 0x
_X_

0X
' 9 5 dsdt

(s, t,u)

holds, and an integration over an area A € R® defined by the substitution
x(s,t) and boundaries sy, s9, t1, to delivers

[ tlf x| 5 %

8}( ox

N ds dt.




Appendix B

Implementation Details

In this chapter we concentrate on few selected (not self-evident) algorithms
which have central meaning for this work. For managing general graph struc-
tures and matrix operations required for the ISGCS algorithm, we refer to
existing public-domain libraries.

The following extractions from the implementation are printed as pseudo
code listings derived from C++ language. Language-specific commands or
control structures are denoted with slanted fonts, user-defined objects in type-
writer style, and comments begin with the character combination “//” and are
typed in Roman style.

B.1 Main Loop (ANN Training)

The program is centered around one main task of continuously selecting sam-
ples from the actual sample set and training the kernel and the shading network
(see section 1.5).

Sample set

N

Shading Kernel
network network

At certain time steps, the main loop (fg. B.1) is interrupted and either a
resampling process or an FEM simulation is triggered which extends or adjusts
the existing sample set, respectively. Thereafter, the algorithm restarts at the
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Initialize first sample set.

Select a sample ray (x,y).

Train the kernel network = : R® — R by
the ray (x,y). The output layer learns
the geometric term (eq. 1.2).

Train the shading network @ : R® — R3
by the point y. The network output layer
learns the normal vector of the emitting

surface at x. /

Switch to a resampling step. _

Switch to the finite element computation. __|

Repeat until “resources are wasted”.

Figure B.1: The main loop of the whole algorithm, consisting of adapting the
kernel and the shading network to the sample sets.

interrupt point.

Extension is accomplished by creating new sample sets which examine the
goal function — the kernel (see section 1.2) — at those places where the approx-
imation accuracy is low. The general ISGCS approach suitable for arbitrary
function approximation tasks is described in chapter 2.1.1.

Adjustment means adding propagated energy to the kernel samples. The
samples are drawn directly from the geometry definition and are multiplied
with the reflection coefficient and the actual emission energy after the k'
FEM calculation, K - B%®) (see section 3.1).

As termination condition of the main loop (fg. B.1), several instantiations
are possible. For example, the available memory resources, i.e., the number of
cells in the shading network, might be a useful criterion, since the complexity
of the final triangulation is proportionally related to the number of cells in
the shading network, which, again, relates to the number of cells in the kernel
network. Thus, this criterion is suitable to limit the final number of polygons,
and it is essential for suiting the rendering resources to the radiosity result. A
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further example for the termination condition might be a simple time criterion.

B.2 Growing Cell Structures

Training both networks — adapting the cell positions by simple vector op-
erations and inserting or deleting cells — is explained in section 2.3. The
ISGCS part is encapsulated as one library block with a resampling function-
ality included. The library interfaces the goal function in an abstract way
which means that it does not have any other kind of access to the goal func-
tion than simply reading an n-dimensional input vector and calculating an
output vector which, then, is interpreted by the according application class.
The goal function in this work, which calculates the geometric term defined by
the geometry and two points x,y € R?, is a four-dimensional function. The
ISGCS library gets the parameter vector s,t,u,v as input. Based on these
parameters, the calculation of the goal function and also the resampling arise.

B.2.1 Sampling the Geometry

For enabling the sampling of the four-dimensional goal function, two tasks
must be accomplished — the parameterization (see page 3 and section 4.3) of
the four-dimensional input vector to two three-dimensional points, and the
calculation of the differential formfactor and the visibility.

Parameterization is proposed as described in the algorithm of figure B.2.
After initializing the patch areas (init() ), the algorithm (2dTo3d() ) is able
to return one three-dimensional surface point corresponding to its two input
parameters s and t.

For further explanations, see the comments of the according pseudo code
lines. The search routine (2dTo3d() ) in the implementation initializes a hash
table (not shown) which then is accessed in linear time.

Visibility is calculated in the common way by testing a ray against the hier-
archically organized surfaces of the whole geometry.

B.3 Orthonormalization

In figure B.3, the orthogonalization like described in section 3.8.1 is outlined.
‘a’ denotes the resulting matrix A, which transfers the A; to the orthonormal
N;. ‘s’ is an array which stores the calculated values f A;Aj, and absVall[i]
contains the norms of the orthogonal functions N;. The functions scal cal-
culate the inner product between two A;4;, N;A;, or N;N;. These different
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init() { // initialize patch dimensions
global int geomArea=0; // reset whole surfaces’ area
for (int i=0; i<N; i++) { // for all patches
geomArea+=patch[i] .area; // add patch size
patch[i] .areaSum=geomArea; // store ’area position’

Vec 2dTo3d(float s, float t) {
// calculate a point from two parameters
float areaPos=t-geomArea;
int i =0;
do
i++
while (i<n) A (patch[i].areaSum < areaPos);

if (i>0)
areaPos-=patch[i-1].areaSum;

t=areaPos/patch[i] .area;

return s-patch[i] .xVec +t-patchl[i].yVec;

Figure B.2: Parameterizing two-dimensional surface coordinates to three-dimen-
sional point coordinates.

functionalities are based on the inner product of two A4;4; which has been
explained in section 3.6.1.

B.4 FEM

For the propagation of the energy between all base components N; and the
kernel, first a propagation matrix 'P’ between the A;, is calculated by init ()
in figure B.4. Through calcH the matrix A,y is initialized like described in
section 3.8.2. Then, propagate() is executed which runs through the array
of transfer coefficients 'P’ and weighs the energy (P[] .val) by the coefficients
of all emitting N; and all receiving N; (matrix 'a’). The result is added to the
particular radiosity coefficients ’b’.
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alN,N1; // result matriz A, see section 3.8.1
s[N,NI; // container for [ A;A;
absVal[Nl; // container for || A;|

al0,0]=1;
s[0,0]=1;
for (int k=1; k<N; k++) { // generate Ny

for (int i=0; i < k; i++)
// caleulate [ AgA; with already used Ay
s[k][il=scal (Ag, 4;);

for (int i=0; i<k; i++)
// reset A in line k
alk] [i1=0;

for (int kk=0; kk<k; kk++) {
// components are calculated from the influence on Ny
// and on the preceding Ny
float tmp=scal (Ngx, Ni);
for (int j=0; j < kk; j++)

a[k] [i]-=tmp/abs [kk]-a[kk] [j];

}
alk]l [k1=1; // coefficient of Ay in Ny equals 1
absVal[k]=norm(N,) ;

}

for (int k=0; k<N; k++) // normalization
for (int i=0; i < k; i++)
alk][i] /= absVal[k];

Figure B.3: Schmidt orthogonalization like described in section 3.8.1.

B.5 Triangulation

The last section contains a description of the re-triangulation algorithm men-
tioned in section 4.3.1. The pseudo code which can be found in figure B.5 is
an example limited to polygons with four vertices. The originating patches
(named patch) are subdivided at the rectangle described by the points pt1,
pt2, pt3, pté4. If this is not sufficiently small regarding the underlying net-
work topology the function is called recursively (sub) for further subdivisions.
Otherwise the color results at the vertices are calculated (collectRadiosity)

and the rectangle is left for the final rendering.
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init () { // calculate propagation matriz P between the A;
float P[N-N];
int m=0; // counts the transfer coefficients
for (int p=0; p<N; p++)
for (int q=0; q<N; q++) {
float sum = 0;
for (int 0=0; 0<Z; o++)
// for all kernel cell components 2,
// compute transfer coefficients from equation (3.56)
sum+=calcH(p,q,0); // see section 3.8.2
P[m] .val = sum; // store the transfer coefficient
P[m] .from = p;
P[m].to = q;
m++;

propagate() {
// calculate propagation between the N;
// include the orthogonality matriz A

for (int i=0; i<N; i++) // reset radiosity coefficients
b[i]=0;

for (int 0=0; o<m; o++) // for all transfer coefficients from P
for (int i=P[o].from; i<N; i++)

// for all non-zero elements from A in line k

float ai=ali,P[o].from];

for (int  j=0; j<N; j++) {
// for all non-zero elements from A in line o
float aj=alj,Plo].to];
float val=P[o].val-ai-aj;
b[jl+=val; // accumulate radiosity coefficient of N;

Figure B.4: Calculation of the transfer factors P in init() and the propagation
of energy by propagate.
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subdivide(patch, ptl,pt2,pt3,ptd) {
for (int i=0; i<N; i++)
// for all surfaces of the geometry definition
// recursively subdivide, ptl...pt4 are the patch vertices
sub(patch[i] ,ptl,pt2,pt3,ptd);

sub(patch, ptl,pt2,pt3,ptd) {
// subdivide patch at quad ptl...pt4
float patchSize=(patch.xLen+patch.yLen)/2;
// reference value as “average length” for comparison with network
Cell cell=bestMatch(shadingNetwork) ;
// determine the cell “under” this patch ...
float edgelLen—=averageEdgeLen(cell);
// ... and the average emanating edge length
if (edgeLen<patchSize) {
// subdivision granularity not yet reached
Point ctr=(ptl+pt2+pt3+ptd)/4; // new vertex
sub(patch, ctr, pt2, pt3, pt4);
sub(patch, ptl, ctr, pt3, pt4);
sub(patch, ptl, pt2, ctr, pt4);
sub(patch, ptl, pt2, pt3, ctr);

else {
// subdivision granularity reached,
// calculate radiosity at vertices (collect energy)
collectRadiosity(ptl);
collectRadiosity(pt2);
collectRadiosity(pt3);
collectRadiosity(pt4);

Figure B.5: The final triangulation algorithm based on the generated shading
network topology, and limited to rectangles.
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