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Abstract: A novel method for approximating the radiosity kernel by
a discrete set of basis functions is presented. The algorithm is charac-
terized by selecting samples from the geometry definition and iteratively
creates a functional model instantiated by a set of Gaussian basis func-
tions. These are supported over the whole environment and thus, surfaces
are not considered separately. Together with the implicit clustering algo-
rithm provided by the applied learning scheme, the algorithm accounts
ideally for coherence in the global kernel function.

On one hand, this leads to a very sparse representation of the kernel.
On the other hand, by avoiding the creation of initial basis functions
for separate pairs of surfaces, the method is capable of calculating even
huge geometries to a desired accuracy with a proportional amount of
computing resources.

Recent results from the field of artificial neural networks (the Growing
Cell Structures) are extended for the presented learning algorithm. This
work is done in Flatland, but there are no methodical constraints which
bound the application to two dimensions.

Keywords: global illumination, radiosity, clustering, visibility, finite el-
ements, neural networks.

1 Introduction

Realistic imaging three-dimensional virtual scenes is accomplished by global il-
lumination methods. The rendering equation [1] offers a comprehensive descrip-
tion of the aspects of light transport. Since it seems to be too complex for direct
evaluation many methods use a simplified view of the behavior of light trans-
fer. Radiosity approaches commonly reduce the light flow to the ideal diffuse
phenomena formulated by the radiosity equation.

B(y) = E(y) + p(y)/SG(X,y)V(X,y)B(X)dX (1)

x,y € RP denote points in the geometry of dimensionality p. For natural
geometries p equals three. We refer to p explicitly as this work is based on, but
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not restricted to two-dimensional scenes only (p = 2). For an easier examination
Heckbert did valuable work concerning this simplification strategy [2] and called
it radiosity in Flatland. The radiosity B located at a point y from the geometry
S C RP is determined by the receiving radiosity from all points x of the envi-
ronment and weighted by a reflection coefficient p. E denotes the self-emittance
at y.

The transfer of energy from point x to point y is weighted by the terms G and
V. G(x,y) = cos ¢, cos ¢, /(2mr), defines the purely geometrical relationships in
Flatland. The ¢, and ¢, are the angles between the edge Xy of length r and the
normals of emitting and receiving edges. V is a visibility function which equals
one if x and y are mutually visible, otherwise zero. See [3, 4] for its physical
derivation.

We define the kernel, k, which describes in one term the purely geometrical
proportion of equation (1) together with the reflection properties.

k(x,y) = p(x)G(x,y)V(x,y) (2)

Solving the radiosity equation. Analytical solutions of (1) are only known
for very specific simple geometries. For numerical calculation, there exist two
different approaches: Monte Carlo methods and finite elements methods (FEM).
This work concentrates on FEMs which transform the radiosity equation into

the linear system
Vi:bizei-i-Zki]‘bj. (3)

The coefficients b;, e;, and k;; are discrete coefficients for an approximation of
B, E, and k from equations (1) and (2). As early radiosity approaches favored the
intuitive view of discrete patches transferring energy through formfactors, the
FEM provides a more general view in terms of n basis functions, N;, weighted by
coefficients b; which send energy through transfer coefficients. The approximated
radiosity B is calculated by the accumulation of the radiosity basis functions,

The n? transfer coefficients k;; between each pair of basis functions N; and N;
are calculated as follows.

1] //k X y Z(Y)dXdy, Za] = 17"'7” (4)

To solve equation (3), several standard algorithms exist which in practice iter-
atively ’propagate’ the energy through the discrete approximation of k. Com-

monly, they start with an initial energy distribution, bgo) = [ E(x)N;(x)dx

2 Motivation

Numerically solving the radiosity equation (1) requires a discretization of the
radiosity function B and of the kernel function k to create a linear system. On
one hand, basis functions should be distributed as sparse as possible to keep the
amount of computing resources small. On the other hand, a certain demanded ap-
proximation accuracy requires an efficient placement of basis functions in terms
of accounting for higher variations in the kernel function with a better resolution.



Coherence. We denoted the radiosity and the kernel function as p- and 2p-
dimensional functions respectively (x € RP). In fact, a realistic geometry defi-
nition of virtual worlds commonly contains single discrete geometrical objects.
These define points on sub-spaces of RP, like 2D-surfaces in 3D and 1D-edges in
2D. Thus, radiosity is a (p — 1)-dimensional function and the kernel of dimen-
sion 2(p — 1). Without occlusion effects, the kernel is smooth in the range of a
single pair of surfaces but commonly, at the transition to another pair, sharp
boundaries arise in the kernel function. These boundaries do not appear if the
interaction between different pairs of surfaces is 'similar’. For example, consider
two nearly equal surfaces which lie close together and send energy to another
which is relatively far away.

In the preceeding section, the basis functions of the kernel were defined as the
tensor product basis of a pair of radiosity basis functions (equation (4)). These
commonly are generated for each separate pair of surfaces by default, and thus,
the coherence of the whole kernel is not accounted for. This work concentrates on
the kernel basis functions directly on a level which abstracts from the geometrical
default discretization by surfaces. The algorithm examines the kernel function
by considering only single kernel values (’rays’). Basis functions of the kernel are
built according to the distribution of rays, independently of single surfaces.

Previous work. HR [5] and WR [6] detect coherence in the kernel between pairs
of surfaces. They do not account for the whole kernel. This is crucial due to the
fact that large geometries need an expensive initialization phase for creating at
least one basis function for each pair of surfaces.

Smits et al. [7] and Sillion [8] propose algorithms which approximate coher-
ence in the energy transfer by spatial coherence in the geometry definition. The
problems are that spacial clusters of the surfaces do not necessarily correspond
to clusters in the kernel, and that possibly spatial clusters may not exist due to
the chosen cluster criterion.

3 The algorithm

A function approximation model for the radiosity kernel is developed which
is based on the supervised growing cell structures (SGCS) approach [9]. It is
derived from the field of artificial neural networks (ANN) and characterized
by the facility of learning a certain functionality based on presenting sets of
examples (‘rays’) from the goal function (kernel). The final model serves as an
approximation of the kernel function. It is instantiated by a set of radial basis
functions (RBF) [10], defined by its expanse and its center. The centers can
be seen as centers of clusters of light transfer. The RBFs serve as kernel basis
function and its coefficients as the discrete approximation coefficients for the
linear system (equation (3)). The learning model adaptively finds clusters in
the input space, and thus, it accounts effectively for the coherence in the kernel
functions.

The iterative learning scheme is based on three essential operations. New
RBFs are added according to the approximation accuracy, the centers of the
RBFs are organized due to the cluster properties in the kernel, and samples
are selected from the geometry automatically directed by the algorithm itself to
avoid redundant examination of the kernel function.



Limitations. We would like to mention that this paper shows work in progress.
We present a basic framework for an alternative representation of the radiosity
kernel. A discretization of the radiosity equation is shown for the two-dimensional
case. The transfer of light, i.e., the solution of equation (3) will be matter of
future work. Thus, coherence originating in effects from the energy transfer is
only accounted for the self-emittance of the surfaces (E from equation (1)) so
far. The last section gives hints in how to go on for a completely iterative and
adaptive radiosity solver.

3.1 Artificial neural networks

Instead of coding a program by hand, the functionality of an artificial neural
network is trained by examples. The network finds its own internal representation
according to the underlying data distribution.

ANNSs consist of two basic elements. First, units (also called neurons) have the
capability of summing several input values and weighting them by a thresholding-
function. Second, these units are connected in a graph-structure by weighted
connections which transport values between separate units and the network’s
input and output. Generally, the topology and the connection weights determine
the network’s functionality and thus these are the parameters which are to be
modified by a learning procedure.

Basically, there exist two different learning strategies, supervised in contrast
to unsupervised learning. Supervised learning means to present input/output
pairs to the network. The connection weights of the network are modified such
that the output units approach the presented output better (steepest descend). In
unsupervised learning only the distribution of the input data is examined and the
units are modified to represent the input space by reference vectors (clustering).
Unsupervised learning is also known as self-organization, competitive learning,
vector quantization, or dimensionality reduction.

In our work, we are looking for an algorithm which combines these two prin-
ciples since we have to analyze the input distribution in terms of ’similar’ light
transfer (clusters in the light transfer) and the kernel value for a certain cluster
has to be approximated concurrently. There are few hybrid algorithms (see [11])
which are not suitable for this task, as both strategies are applied independently.
To the author’s knowledge, [9] is the first method which combines both strategies
in a homogeneous manner.

3.2 Supervised growing cell structures

A SGCS network contains two layers. The first is instantiated by radial basis
functions, the second accumulates each of the output (activations) of the RBFs
to form the output vector (see left side of figure 1). The network realizes a
function f : R® — R™ which serves as an approximation of a goal function
f:R* = R™. Samples are drawn from f, which the network is trained with. At
each state of the learning process, the network generalizes the function f over
its input space to a certain accuracy.

The network is trained by presenting input/output pairs (£,¢) € (R™ x R™).
The unsupervised learning part is accomplished by moving the cells of the first
layer according to the input ¢ to find centers of clusters in the input data. Con-
currently, the second layer is adapted to deliver the intended output (. Moving



the RBFs is accomplished by accounting for a neighborhood relation between
the single cells, which is of predefined — but not fixed — dimensionality. This
relation creates an additional structural information on the training data. In our
case, a two-dimensional map of clusters of light transfer is created. This will
finally enable the transfer of energy, since it relates the basis functions to the
geometrical relationships of the environment.

m-dim output vector n—dim input vector

" best matching unit
lateral connections

Fig. 1. On the left side, an example SGCS network is outlined. The output con-
nections are drawn for four input cells only. On the right side, a two-dimensional
example goal function (a) is approximated (d). (b) and (c) show the samples
which are selected by the algorithm and the created network structure.

The initial topology of the network is a set, A, of cells, connected in a k-
dimensional structure by lateral connections. The only basic element is a k-
dimensional simplex, i.e., for £k = 2 this is a triangle. During a self-organizing
process, new cells are added to A in a way that at each time this basic structure
holds.

Every cell ¢ has attached an n-dimensional synaptic vector w. which is the
position of ¢ in the input vector space V. A mapping ¢y : V — A is defined as

$w:V 2 AEEV) = (dw(l) € A),
1Wou(e) = €Il = min [[w, — ]|, (5)

with w the set of all synaptic vectors w.,c € A. ¢w (&) is called the winning
or the best matching unit (BMU) for an input &.

By equation (5), V is partitioned into a number of regions F, (¢ € A), each
consisting of the locations having the common nearest synaptic vector w,.. This
is known as Voronoi tessellation and the regions are denoted by Voronoi regions.
We define f. the k-dimensional Voronoi volume of a cell and approximate it by

|F.|, f. ~ |F.| = El, with [, is the mean length of the [ edges (the lateral
connections) emanating from a cell ¢. The length of an edge between two cells
i, j is defined as the Euclidian distance between their synaptic vectors [; ; =
[lwWi = wll.



The supervised layer of the network is defined by one additional output
weight vector for each cell, v. € R™,¢c € A. The output of the network, & :
R™ — R™, according to an input ¢ is calculated as

K(€) = 3" Vel (€), with M,(e) = exp(~ 1Sl ©)
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M. is the output of a cell ¢ (activation). d. is assigned to f..

If an I/O pair is presented to the network for training, the sets w and v with
v = {v.,c € A} are modified such that w adapts to the input distribution by
moving cells in n-space. The vectors v are modified to approach the intended
output value (. We define the neighborhood N, of a cell ¢ as the set of directly
connected cells. With the notation X™¥ = X + AX | the adaption of the cell
weights for each iteration cycle is done as follows.

Aws = (& —ws), for the BMU s,
Awp = €,(E—wyp), Vbe€E Ny,
Av. =n(¢ - K(§)) - M., Ve € A,

with €, €,, and 7 the learning parameters for the input weights of the BMU, its
neighbors, and the output weights, respectively.

So far we described the standard SGCS approach. On the right side of figure
(1) the approximation of an example function can be observed. In the following,
we redefine the resource term and add the resampling scheme.

The resource term, 7, is defined in a fashion similar to the L, error measure.
It consists of two components Teps,c and e, .. Consider the cell s as BMU. Tepp s
is incremented by the error which the network compared to the actual { delivers,
ATepps = ||C — Qi||2, Tent,s 18 incremented by one. Concurrently for all cells ¢ € A,
the terms ATenie = —a -« Tent,e and ATeppe = —@ * Teppe are added, which
provide the weighted mean value over a certain time. The final resource value is
calculated according to 7. = Teppc/Tent,c - |Fe|. @ is a ’forgetting-parameter’ in
order to enable a weighted averaging over recent learning cycles.

After a certain number X of iteration cycles the cell ¢ with the largest 7. is
selected from A. Insertion of a new cell r is done in the middle of the longest edge
originating from c. This must keep the network structure homogeneous (only
simplices of dimension k). For the implementation details and the accounting
for the modified Voronoi regions, see [9].

The resampling strategy. The central idea is the detection of regions in the
input space which are not sufficiently represented by training samples. A high
resource term is taken as criterion for the need for new samples (similar to the
need for insertion of new cells). Thus, we define a relation o : (c € A) — {T, F'},
which determines, if a cell ¢ is a critical cell (CC).

o:(c) =(Te >w-T), c € A,

with w a threshold for being a high-resource cell and 7 the mean value of the
resource terms of all cells from A.



For an input £ € R", we define the overall network activation, Dy : R* —
R,DA (&) = >_.ca Mc(€) which is the sum of the activations of all cells of the
network A, and a relation p : R* — {T, F'} which defines a logical value for the
fact that an input ¢ lies in the range of a network A.

pa(&) = (Da(§) > ),

with a threshold ¢.

Further, we define the sub-network of A which consists only of critical cells
as the term Acc, with Acec = {c¢,c € Alo.(c)}.

These definitions enable two essential predicates. First, an input ¢ lies within
a critical region of the network A if pa.. () is true. Second, an input ¢ lies
outside of the range of the network if the term p4(§) returns false.

Thus, a test sample £ fed into the network exposes a place in the input space
which is not sufficiently approximated if the relation 6 : R* — {T, F},6(§) =
Pace (&) A —pa(€) returns the value true. In other words, §(§) indicates that &
falls into a region of the network which is not well represented because it lies
either in a critical zone or at an exterior zone of the network. For the selection
of new samples, the input space is scanned by evaluating 6. New samples are
created and the kernel value calculated at locations where 8 returns true.

The algorithm successively generates sets of sample I/O pairs, S; € R* xR™ :
{&, )} G = f(&),i =1,....,1S;],4 = {0,...,¢ — 1}. The value ¢ is the actual
number of objects in the whole set of all samples S = {S;},7 = 0,...,p — 1.
The initial set Sy is taken from V completely randomly. All further sets are
calculated as described. The samples for training are selected from all sets from
S with equal probability.

A new sample set is generated according to the uncertainty principle, i.e., if
the ratio of the number of cells and the number of training samples, ¢ = | A|/|S],
with |S| = Z?;é |S;| rises above a certain threshold ¢4 s. The whole algorithm
is outlined in figure 2 on the left side.

Finally, we list some experimentally determined parameters which showed
a robust behavior of the algorithm: ¢, = 0.01, ¢, = 0.001, = 0.1, a = 0.05,
A=300,w=06,9=1,1¢ss =0.05.

3.3 Approximating the kernel

A one-dimensional parameterization of the geometry is chosen as described in
[2] (see figure (3)). By the parameters s and ¢ we select two points on the edges
of the geometry. For training the SGCS with the kernel function, the naive way
would be to feed the parameters s and ¢, and the kernel value directly into
the network. Since the parametrization discards the geometrical relationship
between separate surfaces, clusters could be created at locations which are not
suitable to be represented by one reference interaction for the transfer of light.
The parameters for the SGCS must somehow expose the geometrical properties
of the kernel function.

Thus, we introduce the function v : R> — R” (generally, v : R*»—1 —
R"™) which expands the parameters s and ¢ to tuples (re-parametrization) which
should implicitly contain the information to be examined. In this work, we set
n = 4 and define v such that it is composed of the four coordinates of the two
points in Flatland defined by s and ¢.



Create the initial sample set So randomly, initialize S, set the
number of sample sets p = 1.

Set the counter A\, := A.

_—
Define the network dimensionality and the learning parameters. ' goal function

Choose i, j randomly, such that S; € S and i < |S;], ﬁ
and present (&;,¢;) from S; to the network.

Adapt the cell weights according to (&;,(;).

if A\c = 0 insert a cell and set \. := ), else decrement A\, '

repeat until #cells/#samples exceeds 14 s.

create a new |/O set Sp41, by directed resampling,
add it to S, and increment p.

repeat

Fig. 2. The extended basic algorithm for the SGCS network, and a running
example which shows growing and the adaptive function approximation of the
goal function.

The output which the network should learn, { € R, is set to the kernel
function value multiplied by the emitting energy of the surface, the ’first shot’
of energy (according to the initialization of the linear system (3)). We set the
emitting energies of surfaces which are not defined as emitters to a small value
to have a situation like after a few iteration cycles of the simulation of the energy
flow.

The SGCS is fed with the I/O pairs (y(s, t), (). These are calculated from the
geometry definition in the classical manner by checking rays against all surfaces
and calculating the kernel value. The first set is calculated randomly, all further
automatically through the SGCS to account only for those zones which are not
sufficiently examined.

The complete functional description of the approximated kernel k£ : R2 — R
is defined by the concatenation of the two functions, v : R> — R” and the SGCS,
k:R*" = R,

k=vok(s,t), 0<s,t<1.

k consists of the set of z basis functions, M;,i = 1, ..., z. The approximated
kernel value « is calculated as described in equation (6). The output weights of
each cell, v; € R4 = 1,..., z, which connect the output layer of the SGCS are
considered as the transfer coefficients according to a kernel basis function M;.

4 Results

Figure 3 shows an example Flatland geometry (a), and the kernel function (b).
The blocker is not included into the parametrization. (d) is an approximation
through the SGCS, and (c) exposes the centers of the RBFs. For the visualization
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Fig.3. An example Flatland geometry (a), the kernel (b), the distribution of
the basis functions (c), and the kernel approximation (d).

in 2D (c), the four-dimensional reference vectors are re-projected according to
their average parameters s and ¢ for the selected samples.

It can be observed that the resolution of the basis functions depends on the
variation in the kernel. The sharp curves in the kernel function, arising from the
effect of the blocker (arrows in (d)), are represented by more RBFs than the
smooth areas. Even for a small energy transfer the coherence is higher (lower
arrows in (d)), and thus fewer RBFs are placed by the SGCS.

We tested the clustering and the iterative facilities with a large geometry.
The edges of the example Flatland geometry were subdivided into 1000 equally
spaced edges.The resulting cell distribution was the same like in the unsubdi-
vided case. This is evident, due to the fact that the network sees nearly the
same information (sample rays). The convergency of the whole algorithm was
the same, in contrast to HR which would generate 10° default basis functions to
get the first approximation. Even the approximation accuracy (Ly error) of the
SGCS were about 50% higher compared with a HR approach and for an equal
number of basis functions (about 400 in this case).

The comparison of the number of samples between the GCR approach and
HR is questionable, since the relationship between accuracy and the number of
samples in the HR approach has to be examined further. We can state, that the
ratio of the number of cells and the number of samples is about 20. We get a
similar number of sample shots in HR if we use also 20 samples to determine
whether to descend a level in the hierarchy (oracle). Thus, the number of samples
does not differ in a fundamental manner.

5 Summary

We proposed a method which represents the radiosity kernel, even for huge
geometries with few basis functions. By accounting for the coherence in the
global kernel function, the final representation is very sparse. Thus the well-
known problem of initial linking which creates default basis functions for each
pair of surfaces could be avoided.

The representation by the model is completely adaptive, which means that
the algorithm behaves robustly in case of slightly changing geometry or lighting
conditions. This delivers also a promising outlook on an incremental radiosity
approach.



Future work. Although this work considers only Flatland, the algorithms can
be modified for calculation of realistic three-dimensional scenes. For that, the
SGCS scheme has to be adapted to four dimensions according to the radiosity
kernel for 3D scenes. This is described in [9]. Also [12] can be applied to account
for the dimensionality of the underlying data implicitly. All assumptions in this
work hold for SGCS networks of any dimension and also for the flexible approach
[12].

The next step will be to incorporate the energy transfer, i.e., to find basis
functions for the radiosity which suit to the generated kernel basis functions.
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