
Tumble Tree – Reducing Complexity
of the Growing Cells Approach

Hendrik Annuth and Christian-A. Bohn

Wedel University of Applied Sciences
Wedel, FR Germany

Abstract. We propose a data structure that decreases complexity of
unsupervised competitive learning algorithms which are based on the
growing cells structures approach. The idea is based on a novel way of
ordering the cells in a tree like data structure in a way that random
access during training is replaced by tree traversals.

Overall time complexity is reduced from O(n2) to O(n logn) which opens
new application fields to the growing cells structures approach.

Key words: neural networks, unsupervised learning, reinforcement learn-
ing, growing cells structures, growing neural gas.

1 Introduction

The importance of automatic analysis and interpretation of complex, huge and
arbitrary data sets has notably increased in the field of computer science. This is
driven by the fact that these data sets nowadays can easily be created, retrieved
and stored.

The analysis and interpretation of such data using unsupervised competitive
learning algorithms has shown to be a great success. One important approach
from the field of unsupervised learning is the growing cells structures (GCS)
concept [1]. It is deduced from Kohonen’s self organizing map (SOM) [2] and
shares its advantages like autonomy, robustness, scalability and the ability of
retrieving information from very complex data. In contrast the GCS approach
is able to locally and globally adapt to a given problem under consideration by
adding and removing cells in the network. This makes the method very flexible
and adaptive. The GCS approach achieves extraordinary results in the area of
classification, clustering, dimensionality reduction and data mining, such that
there exist a huge amount of applications.

Despite the success of the GCS approach, due to its quadratic complexity,
the restricted network size hinders many applications where huge amounts of
data arise. This comes from the fact that at every iteration cycle each network
cell has to be visited once and a local counter at each cell has to be decreased or
increased. Up to now, approaches which try to circumvent this problem, like [3],
mostly fail if input data grows significantly and complexity issues surface again.



2 Tumble Tree – Reducing Complexity of the Growing Cells Approach

Previous Work. A very important preparatory work for the GCS approach
was [2]. They propose the self organizing map which iteratively adapts a 2D
mesh to a distribution of samples. While a SOM has a fixed number of elements,
the growing cells structures approach [1, 4] allows the network for dynamically
adapting to the complexity of the sample data.

Optimizations of the basic GCS approach have been presented in [5] where
an advanced clustering algorithm enables analysis of huge data sets. The ability
of handling high-dimensional and very noisy data sets has been proven in the
field of medicine [6, 7]. Further useful example applications of the GCS approach
are document categorization [8]. And [9] describes an interesting approach sup-
porting classification of measurements from a technical gas sensor.

Further development has been driven by the application of surface recon-
struction from scanned 3D point sets. This comes from the fact that complexity
issues are very significant in this area since the amount of training samples easily
exceeds hundreds of thousands of samples per application case. Surface recon-
struction with GCS have first been tackled in [10] and [11]. Based on this, [12]
proposes a mesh optimization algorithm, and to achieve a better surface quality
[13] introduces an edge swap operation. In [14] surface reconstruction is further
optimized by the smart growing cells (SGC) network which proposes a framework
of extending general unsupervised learning by application related rules.

In the following, we first explain the vital steps of the GCS algorithm, which
are important to analyze runtime issues. Then we introduce the tumble tree
data structure which reduces the complexity of the standard GCS approach.
Finally, we show that this is a major breakthrough for the GCS method through
its application to surface reconstruction where execution time is reduced from
several weeks to just hours.

2 The Tumble Tree Idea

2.1 Standard GCS Approach

Basic Loop. The basic training process of the growing cells approach is exposed
in Fig. 1. Growing and shrinking of the network within the GCS process depends
on the signal counters at each cell. Every time a cell is moved to match a sample
its signal counter is affected. In [1] α is constant, but for huge data sets adaption
of α during network training is required as shown in [3].
See [1] for a detailed description of the basic GCS approach.

Handling Signal Counters. If a sample is presented to the network, finding
the relevant BMU (step 1 of Fig. 1) has O(log n) time complexity with n the
number of cells and if the cells are structured in an octree, for example. Never-
theless, adapting the signal counters τk and finding the cell with the highest and
those cells with a low counter for adaption of the network size (step 3 and 4 in
Fig. 1) has time complexity of O(n).



Tumble Tree – Reducing Complexity of the Growing Cells Approach 3

1. Select a random sample from the data set and find the net-
work cell lying closest to it — the winning or best matching
unit (BMU). Move the BMU and its neighbors according to a
certain amount in the direction of the sample.

2. Increment the signal counter τBMU of the BMU and decrease
signal counters of all other cells by multiplying them with a
coefficient α < 1.

3. After a certain number of iterations (steps 1 and 2) determine
the cell with the greatest signal counter and add a new cell
next to it, since a high signal counter indicates an underrepre-
sentation of cells compared to the amount of samples at that
cell.

4. After a certain number of iterations of step 3 determine those
network cells which contain a signal counter value below a
certain threshold τ and delete them, since they are not repre-
sented through an adequate number of samples at that loca-
tion.

Fig. 1: Algorithm of the classical GCS approach.

Since during learning the GCS grows to about the size of the sample set, the
above steps have to be executed n times leading to complexities of O(n log n)
and O(n2), respectively, leading to overall complexity of O(n2). See Fig. 2 for a
visualization of what happens with the signal counters if cells are moved.

This quadratic complexity is the reason for the lack of applications with sam-
ple set sizes above few hundreds of thousands of samples. From our experiences,
we learned that calculation time rises from a few minutes to several weeks if
network sizes rise from about 105 to just about 106 cells.

Thus, for these two tasks of updating signal counters and searching cells
(steps 2, 3, and 4 from Fig. 1) we propose a new algorithm as follows.

2.2 Signal Counters in the Tumble Tree

We add a concept which we term the tumble tree. The tumble tree is a tree-like
data structure concurrent to the GCS network with n nodes each of them linked
to a single network cell — each cell in the GCS network has its counterpart in the
tumble tree. Essentially, the tumble tree is a binary tree — each node k has two
children. The child subtree on the left contains only nodes with a signal counter
smaller than τk, those on the right have signal counters which are greater than
or equal to that of node k.

All nodes in the tree contain a cell signal counter and a local value αk. To
determine a signal counter at a node, all αk above the node have to be multiplied
by it. The reason for that will be explained on the following pages.

Considering the algorithm from Fig. 1, our method starts again by finding
the BMU (step 1), but for updating the signal counter and for searching the



4 Tumble Tree – Reducing Complexity of the Growing Cells Approach

Fig. 2: On the left, a simple GCS network is exposed. In the middle, cell (a) is moved, at
the bottom cell (b) is moved. The right side shows the change of the signal counters τk

of each node. In case (A) all τk equal one, in (B) node (a) is moved while incrementing
its signal counter, the remaining nodes’ τk are decreased by a multiplication with α.
In case (C) the similar happens with node (b).

highest and the low signal counters (steps 2, 3, and 4) it switches to the tumble
tree and accomplishes the operation from there.

Searching Cells regarding its Signal Counters. The first of the two tasks
to be realized in the tumble tree is determining the cells with the highest and
the lowest signal counters. In the standard GCS method this is achieved by a
linear walk through a simple list of the cells. In our proposal, we assume at the
moment that the tumble tree nodes contain the correct signal counter values.
Then, finding the highest τk can be simplified by choosing the outer right node
at the bottom of the tree.

Determining all nodes with τk below a certain threshold τ is accomplished
by descending the tree from the root node and comparing the signal counter τk
of the visited node k with the threshold τ . As long as τk < τ hold we take a
branch to the right. If τk < τ does not hold, then the left child of the actual
node is the root node of a subtree which only contains nodes of cells for which
τk < τ hold.
Obviously, the complexity of the traversal — the search task — is O(log n).

Topology Maintanance. If a BMU of the GCS has been determined, its signal
counter has to be incremented and those of all other cells have to be decreased
by a certain factor α. This could change the validity of the tumble tree since its
topology is determined from the size of each τk.

To keep the tumble tree valid, nodes where signal counters change must be
repositioned in the tree. This means the BMU’s node must be taken off and be



Tumble Tree – Reducing Complexity of the Growing Cells Approach 5

reinserted regarding its new τk. The remaining nodes can be kept untouched
since their signal counters change to the same amount each.

Reinserting the BMU’s node with a certain new τBMU is done by traversing
the tree from the root node and comparing its τBMU with the signal counters at
the visited nodes. Depending on the result a branch to the left or to the right
child is taken until the leaves of the tree are reached. At this position the BMU’s
node is inserted as a new leave node.

The complexity of this step is also O(log n).
Up to now we just assumed that signal counter values are known. Finally, we
explain their management in the following.

Handling Signal Counters. Up to now, the only task left with complexity
O(n) is the update of the signal counters in all cells after a new BMU has been
determined. We solve this issue as follows.

The signal counters of all cells but the BMU must be multiplied by an actual
value α. This multiplication is postponed, and instead the relevant cells are
marked by multiplying this α with a node-local αk contained in the root node of
the subtree of those cells. This subtree is just the complete tumble tree without
the BMU node.

Postponing this multiplication through one root node prevents from visiting
all cells at the moment, but if one τk in a node is needed, it first has to be
generated from the postponed α-values spread over the whole tumble tree. It is
required for each of the following three cases.

1. If a BMU node is to be taken out of the tree, then for later reinsertion τBMU

must be known. This is accomplished by determining the path back to the
root and multiplying all visited (postponed) αk with the actual τBMU. Now
the BMU node with a valid signal counter can be taken out of the tree.
What remains is the α-value which is contained in and which vanishes with
the node. It virtually serves as postponed α-value for the subtrees and must
be propagated to the left and the right child of the BMU node in order keep
the signal counters underneath the missing node being valid.

2. When reinserting a BMU’s node into the tumble tree again, then for the
comparison, all signal counters on the way down to the right place of the
node are required. This is simply accomplished by accumulating the values
αk of all nodes which are visited on the way down.
Additionally, the α-values are propagated through the nodes by multiplying
them with each τk, and finally they are set to 1, such that nodes on this path
contain the true τk and a neutral αk. The reason for that is, that the node
which is to be reinserted even contains a valid signal counter (from step 1
from above). Keeping the old αk in the nodes above would virtually change
the signal counter of the new node.
Additionally, since all αk on the way down to the inserted node are combined
with the relevant τk — and thus set to a neutral value — the former post-
poned α-values are now missing at the child subtrees of each of the nodes.



6 Tumble Tree – Reducing Complexity of the Growing Cells Approach

To solve this, the propagated αk are also propagated to the left and the right
child nodes on the way down to the new node.1

3. The highest and the low signal counters are also determined on the fly by
accumulating the αk of the visited nodes while traversing the tumble tree
like described above.

All three tasks from above can be accomplished in O(log n) time complexity and
without touching every node in the GCS. For an example of a simple network
see Fig. 3.

Thus, the linear complexity for accessing the signal counters is now driven
down to O(log n), and with complexity of step 1 in Fig. 1 this leads to an overall
complexity of our GCS approach of O(n log n).

3 Conclusion

One could think that there is nothing to add at “the algorithm is driven down
from O(n2) to O(n log n)” — nevertheless, in many cases n is not big enough to
have a favorable effect on an application. Due to that, we justify our algorithm
with the task of surface reconstruction which is a vital application for the GCS
approach like mentioned in section 1. To assure logarithmic complexity we used
a red-black-tree [15] as basis for the tumble tree.

Table 1 exposes the results. The acceleration of our approach compared to
using the classical GCS algorithm with squared complexity is impressive. It
can be seen that computation times rise dramatically if the tumble tree is not
utilized. Our approach enables creating networks with several millions of cells in
an acceptable time. Besides the numbers, Fig. 4 shows some visual results.

Network size [number of cells]

20k 50k 200k 1,500k 3,000k

Classical GCS 5 min 24 min 7 h 2 weeks 8 weeks

GCS with Tumble Tree 1 min 3 min 14 min 3 h 7 h

Table 1: Computing time of the classical GCS method rises quadratically with network
size. Using the proposed tumble tree reduces complexity to O(n logn) and calculation
times are significantly diminished in a way that an application depending on a huge
number of cells can now be realized in an acceptable amount of time of few hours
instead of weeks.

1 The way down the tree looks like “tumbling” from the left to the right which delivers
the name of our approach.



Tumble Tree – Reducing Complexity of the Growing Cells Approach 7

Fig. 3: A: The cell (a) has recently been selected as winning cell. Now (b) is the winner
cell and the signal counter update is imminent. B: All alpha values from nodes above
(b) are collected and multiplied with the signal counter of (b). C: Since (b) will be
detached soon, the children of (b) must receive an update of their α-values. Therefore
the update information is propagated to the neighboring nodes and αk of (b) is set to 1.
D: The signal counter of (b) is now valid and does not contain any postponed α-values.
It can be detached from the network and its signal counter be incremented since it has
been selected as BMU. The remaining cells are multiplied with α by postponing the
multiplication in the α-value of node (d). E: The node (b) is reinserted. To determine
its position its signal counter is compared with the counters of the visited cells, but
before, each of the cell counters have to be determined by propagating the αk down
the tree. Then, the node will be remounted in the tree when it reaches an empty node.
F: (b) has been reinserted and the signal counter update process is finished.



8 Tumble Tree – Reducing Complexity of the Growing Cells Approach

Summarizing, we showed how to reduce complexity of the common GCS ap-
proach from O(n2) to O(n log n). Essentially this is achieved by organizing the
network cells in a tree-like data structure, and instead of a linear loop through
the set of cells for certain operations a tree-traversal can be accomplished which
requires logarithmic time complexity.

20,000 cells 200,000 cells

1,500,000 cells 3,000,000 cells

Fig. 4: A vital example application which emphasizes the importance of allowing the
GCS network for growing to sizes of several millions of cells is surface reconstruction
from arbitrary 3D point samples. Here, the quality of the reconstructed surface strongly
depends on the number of triangles. When using a GCS for this tasks the number of
cells equals the number of triangle vertices and thus the application is simply not
possible being realized if few hundreds of thousands of samples (which is a typical
amount in this type of tasks) require several days of computation time.

As an example, we presented an application case which was not possible
being realized up to now. Since the GCS algorithm is utilized in a huge variety
of applications, we are confident, that this approach might be more than simply
an optimization of a classical method.

For future work, we are planning a parallelized version of the algorithm. Since
even the general GCS algorithm is suitable for parallelization, we think we could



Tumble Tree – Reducing Complexity of the Growing Cells Approach 9

achieve interactive or real-time training rates — at least for specific simplified
tasks.

References

1. Fritzke, B.: Growing cell structures - a self-organizing network for unsupervised
and supervised learning. Neural Networks 7 (1993) 1441–1460

2. Kohonen, T.: Self-Organized Formation of Topologically Correct Feature Maps.
Biological Cybernetics 43 (1982) 59–69

3. Ivrissimtzis, I., Jeong, W.K., Lee, S., Lee, Y., Seidel, H.P.: Neural meshes: sur-
face reconstruction with a learning algorithm. Research Report MPI-I-2004-4-005,
Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken,
Germany (October 2004)

4. Fritzke, B.: A growing neural gas network learns topologies. In Tesauro, G., Touret-
zky, D.S., Leen, T.K., eds.: Advances in Neural Information Processing Systems 7.
MIT Press, Cambridge MA (1995) 625–632

5. Hodge, V.J., Austin, J.: Hierarchical growing cell structures: Treegcs. IEEE Trans-
actions on Knowledge and Data Engineering 13 (2001) 207–218

6. Wong, J.W.H., Cartwright, H.M.: Deterministic projection by growing cell struc-
ture networks for visualization of high-dimensionality datasets. J. of Biomedical
Informatics 38(4) (2005) 322–330

7. Mahony, S., Benos, P.V., Smith, T.J., Golden, A.: Self-organizing neural networks
to support the discovery of dna-binding motifs. Neural Netw. 19(6) (2006) 950–962

8. Deng, W., Wu, W.: Document categorization and retrieval using semantic mi-
crofeatures and growing cell structures. In: DEXA ’01: Proceedings of the 12th
International Workshop on Database and Expert Systems Applications, Washing-
ton, DC, USA, IEEE Computer Society (2001) 270

9. Cheng, G., Zell, A.: Externally growing cell structures for data evaluation of
chemical gas sensors. Neural Computing and Applications 10(1) (2001) 89–97

10. Hoffmann, M., Vrady, L.: Free-form surfaces for scattered data by neural networks.
Journal for Geometry and Graphics 2 (1998) 1–6

11. Yu, Y.: Surface reconstruction from unorganized points using self-organizing neural
networks yizhou yu. In: In IEEE Visualization 99, Conference Proceedings. (1999)
61–64

12. Álvarez, R., Noguera, J.V., Tortosa, L., Zamora, A.: A mesh optimization algo-
rithm based on neural networks. Inf. Sci. 177(23) (2007) 5347–5364

13. Mari, Jo a.F., Saito, J.H., Poli, G., Zorzan, M.R., Levada, A.L.M.: Improving the
neural meshes algorithm for 3d surface reconstruction with edge swap operations.
In: SAC ’08: Proceedings of the 2008 ACM symposium on Applied computing,
New York, NY, USA, ACM (2008) 1236–1240

14. Annuth, H., Bohn, C.A.: Growing cells meshing. In: In Proceedings of 3IA — The
13th International Conference on Computer Graphics and Artificial Intelligence.
(2010)

15. Bayer, R.: Symmetric binary b-trees: Data structure and maintenance algorithms.
Acta Inf. 1 (1972) 290–306


