Mitarbeiter
Gliederung der Vorlesung Diskrete Mathematik im SS 2018
Die im Folgenden angegebenen Vorlesungswochen sind ein Richtwert, von dem der tatsächliche Vorlesungsablauf um maximal eine Woche abweichen kann.
1. Grundlagen der Mathematik (1. Woche) (Folien erweitert am 11.04.2018)
1.1 Einführung
1.2 Aussagenlogik (Beweis des Modus Tollens)
1.3 Prädikatenlogik (Prädikatenlogikaufgaben)
2. Mengenlehre (2.-4. Woche)
2.1 Grundlagen
2.2 Relationen (Notenbeispiel)
2.3 Funktionen
2.4 Boolesche Algebren
3. Beweisführung (5.-6. Woche)
3.1 Strukturen der mathematischen Beweisführung
3.2 Vollständige Induktion (3-Teilbarkeit, Grammatikbeispiel, falscher Induktionsbeweis)
3.3 Beweisstrategien
4. Zahlentheorie (7.-8. Woche)
4.1 Teilbarkeit
4.2 Teilen mit Rest
4.3 Primzahlen (Beispielrechnungen für ggT und kgV, Primfaktorzerlegung mit Maxima)
Anmerkung zur Datei Primfaktorzerlegung: Diese sollte mit der Erweiterung .wxm abgespeichert werden (nicht .txt). Diese Datei kann dann mit der Open-Source-Software Maxima (download hier für alle Betriebssysteme oder hier eine etwas angestaubte aber funktionierende Version auf dem Handout-Server für Windows) ausprobiert und bearbeitet werden. Warnung: Die zugehörige Datei sollte nicht mit einem anderen Editor als Maxima verändert werden!
4.4 Modulare Arithmetik
5. Algebraische Strukturen (8.-9. Woche)
5.1 Gruppen
5.2 Körper
6. Kombinatorik (10. Woche)
6.1 Zählformeln für Mengen
6.2 Permutationen
7. Graphentheorie (11.-12.Woche)
7.1 Terminologie und Repräsentation
7.2 Wege in Graphen (Beispiele, Algorithmenbeispiel zu Dijkstra, Dijkstra für Rechnernetze)
7.3 Bäume (Dodekaedergraph als Beispiel für Kruskal (rot) und Dijkstra (blau))
7.4 Planare Graphen (Beispiel eines Graphen, der eine Unterteilung von K3,3 enthält)
7.5 Färbungen
Videos zur Vorlesung
Alle Vorlesungen des SS 2017 sind als Video aufgezeichnet. Es handelt sich um unbearbeitete Videos aus 3 verschiedenen Kameraperspektiven, die nur getrennt angesehen werden können. Für die meisten Szenen ist Kamera 2 am wertvollsten.
Sie können die Videos nur über das LAN von einem RZ-Rechner auf einen USB-Stick downloaden. Danach können sie lokal auf Ihrem Gerät angesehen werden.
Wenn Sie sich in einem RZ-Rechner einloggen, müssen Sie auf den Handout-Server gehen (unter Windows ist das Laufwerk M:). Sie finden die Videos im Verzeichnis /Media/public/iw/2017_SS_DM.
Im SS 2018 soll die Vorlesung noch einmal aufgezeichnet werden. Die Videos werden zeitnah ins Verzeichnis /Media/public/iw/2018_SS_DM gestellt.
Für ein online-Streaming von außerhalb des Campus oder über das WLAN auf dem Campus kann Ihnen nicht genügend Bandbreite zur Verfügung gestellt werden. Daher ist der Zugang zum angegebenen Verzeichnis über das Internet gesperrt.
NEU (16.05.2018):
Die Kamera-2-Videos sind jetzt auch online verfügbar: Hier finden Sie alle Videos der bisher im SS 2018 gehaltenen Vorlesungen. Das Passwort erfahren Sie in der Vorlesung. Interessierte von außerhalb können es bei mir per email erfragen.
Literatur
Lehrbuch zur Vorlesung
Sebastian Iwanowski / Rainer Lang: Diskrete Mathematik mit Grundlagen, Springer 2014, ISBN 978-3-658-07130-1 (Print), 978-3-658-07131-8 (Online). Bestellt werden kann hier (Printexemplar bei "Softcover". Falls falsche Währung angezeigt wird, oben rechts "deutschsprachiger Raum" einstellen).
Bücher mit (teilweisem) Bezug zur Vorlesung oder zur Vertiefung:
Martin Aigner: Diskrete Mathematik, Vieweg 2001 (4. Auflage), ISBN 3-528-37268-0
Albrecht Beutelspacher / Marc-Alexander Zschiegner: Diskrete Mathematik für Einsteiger, Vieweg 2004 (2. Auflage), ISBN 3-528-16989-3
Norman L. Biggs: Discrete Mathematics, Oxford University Press 2002, ISBN 0-19-850717-8
Neville Dean: Diskrete Mathematik, Pearson Studium, Reihe "im Klartext" 2003, ISBN 3-8273-7069-8
Benjamin Klopsch: Endliche Körper - Eine kurze Wiederholung, Seminarunterlagen 2001 (Download mit freundlicher Genehmigung des Autors)
Dirk Hachenberger: Mathematik für Informatiker, Pearson Studium 2005, ISBN 3-8273-7109-0
Hans Kurzweil: Endliche Körper, Springer 2007, ISBN 978-3-540-49081-4
Steffen Lohrke: Endliche Körper, Seminararbeit 2005 bei Prof. Dr. Lang, Vortrag und Ausarbeitung
Jiri Matousek / Jaroslav Nesetril: Diskrete Mathematik - Eine Entdeckungsreise, Springer-Verlag 2001, ISBN 3-540-42386-9
Christoph Meinel / Martin Mundhenk: Mathematische Grundlagen der Informatik, Teubner 2002 (2. Auflage), ISBN 3-519-12949-3
Angelika Steger: Diskrete Strukturen, Bd.1, Springer 2007 (2. Auflage), ISBN 3-540-46660-6
Gerald Teschl / Susanne Teschl: Mathematik für Informatiker, Band 1: Diskrete Mathematik und Lineare Algebra, Springer 2008 (3. Auflage), ISBN 978-3-540-77431-0
Literatur zur allgemeinen mathematischen Horizonterweiterung:
Martin Aigner: Graphentheorie - Eine Entwicklung aus dem 4-Farben-Problem, Teubner 1984, ISBN 3-519-02068-8
Martin Aigner / Ehrhard Behrends: Alles Mathematik - Von Pythagoras zum CD-Player, Vieweg 2002 (2. Auflage), ISBN 3-528-13131-4
Martin Aigner / Günter Ziegler: Proofs from THE BOOK, Springer-Verlag 2010 (4. Aufl.), ISBN 978-3-642-00855-9
in der Bibliothek auch auf Deutsch erhältlich:
Das Buch der Beweise, Springer-Verlag 2004 (2. Aufl.), ISBN 978-3-540-40185-8Benjamin Klopsch: Audio-CDs und Reed-Salomon-Codes, Seminarunterlagen 2001 (Download mit freundlicher Genehmigung des Autors)