Vorlesung Diskrete Mathematik im SS 2017

English website

Hörerkreis:

1. Semester aller Bachelorstudiengänge der FH Wedel außer BWL und WIng

Übergangsblock für Masterstudierende, die nicht an der FH Wedel ihren Bachelor gemacht haben

Schüler, die in eine Vorlesung als Orientierung hineinschnuppern wollen (siehe gesonderter Aushang)

Arbeitsaufwand: 5 ECTS-Punkte

Vorlesungstermine: 
   Di + Do 15:30 - 16:45 Uhr, HS 5 (ab 11.04.)
   Am 13.04. findet die Vorlesung bereits von 14:00 - 15:15 Uhr statt, weil die Übung an diesem Tag noch ausfällt.

Große Übung bei Cordula Eichhorn:   
   Do 14:00 - 15:15 Uhr, HS 5 (ab 20.04.)

Tutorien in Kleingruppen:   
   jeweils wöchentlich (ab 21.04.)
   weitere Details mit kurzfristigen Änderungen auf der zugehörigen Übungsseite

Studienbedeutung und Vorlesungsinhalte

Diese Vorlesung legt das mathematische Fundament für das gesamte weitere Studium. Da hier auch elementare mathematische Konzepte integriert sind, liefert diese Vorlesung auch das tiefere Verständnis für die anderen Mathematikvorlesungen und sollte unbedingt als erste belegt werden. Es gibt in den Inhalten Querverbindungen zu vielen nachfolgenden oder gleichzeitig stattfindenden Veranstaltungen.

Das Gebiet der Diskreten Mathematik umfasst mehrere Teilgebiete der Mathematik, welche alle mit endlichen oder zumindest abzählbaren Strukturen zu tun haben (Strukturen, die nicht so dicht sind wie z.B. die Menge der reellen Zahlen; genau wird das in der Vorlesung erklärt): Lehre der endlichen und abzählbaren Mengen, Theorie der natürlichen und ganzen Zahlen (Teilbarkeit, Primzahlen, etc.), Algebra in endlichen Mengen, Kombinatorik, Graphentheorie (Theorie der Gebilde aus Knoten und Kanten). Details können der nebenstehenden Gliederung entnommen werden.

Die Diskrete Mathematik ist für die IT-Studiengänge so wesentlich wie die aus der Schule besser bekannte Analysis für Physik und Ingenieurwissenschaften.

Diese Vorlesung behandelt in den ersten 5 Wochen die für ein grundlegendes Verständnis aller mathematischen Überlegungen notwendigen Inhalte der Logik, allgemeinen Mengenlehre und Beweisführung. Dieser Vorlesungsteil ist für alle MINT-Studiengänge (nicht nur der IT) relevant, weil er die mathematischen Grundlagen legt, die in jedem Studiengang gebraucht werden.Vorausgesetzt wird lediglich Schulstoff bis zur 9. Klasse. Die Teilnahme an diesem Teil der Vorlesung legt nicht nur die notwendigen Fundamente für weitere IT-Inhalte wie Programmieren und Datenbanken, sondern auch für eine systematische Analysefähigkeit in vielen Anwendungsbereichen des Lebens. Der weitere Verlauf der Vorlesung geht dann mehr auf die spezifischen Gebiete der Diskreten Mathematik ein. Die Anwendungsrelevanz bleibt aber erhalten.

Organisation dieser Lehrveranstaltung

Die Vorlesung findet wöchentlich an den oben angegebenen Terminen statt. Sie wird für alle im Plenum gehalten.

Die Übungen werden von Cordula Eichhorn betreut. Frau Eichhorn gibt in Absprache mit mir in jeder Woche Übungsaufgaben auf, die auf ihrer Seite online gestellt werden. Sie führt die Lösungen eine Woche später in der großen Übung im Plenum vor und beantwortet Ihre Fragen dazu.

Für die Aufarbeitung des Lernstoffs stehen in Kleingruppen studentische Tutoren zur Verfügung. Diese bieten jeweils einmal pro Woche einen Übungstermin ("Tutorium") an, der freiwillig ist und bei Verständnisschwierigkeiten besucht werden kann (sozusagen "Nachhilfe"). Die meisten Studierenden nehmen dieses Angebot regelmäßig wahr.

Die Tutoren korrigieren auch die Übungsaufgaben. Jeder Übungsteilnehmer muss sich aus diesem Grund in genau einem Tutorium eintragen, auch wenn er nicht an den Tutorien teilnimmt. Details zu dieser Anmeldung werden in den ersten Vorlesungen bekanntgegeben. Aktuelle Informationen zu den Tutorengruppen stehen auf der Webseite von Frau Eichhorn.

Die Übungsaufgaben sollen selbständig bearbeitet und in der großen Übung in der Woche nach dem Ausgabetermin abgegeben werden (mit Angabe des Übungstermins/Tutors). Der Tutor streicht die Fehler an und bespricht die wichtigsten Schwierigkeiten im darauf folgenden Tutorium. Außerdem werden Fragen zum laufenden Vorlesungsstoff beantwortet.

Für einen erfolgreichen Studienverlauf gebe ich folgende Empfehlung:

Der Besuch der Vorlesung ist freiwillig, d.h. es wird keine Anwesenheitskontrolle durchgeführt. Dennoch rate ich, an allen Vorlesungen teilzunehmen, da in der Vorlesung viel geübt wird und interaktiv auf Ihre Fragen eingegangen wird. Das Lesen des Lehrbuchs ersetzt zwar theoretisch die Vorlesung, weil es auch zum Selbststudium konzipiert ist, überfordert aber viele Erstsemester, weil sie in der Schule eine derartig selbständigen Lernstil noch nicht gelernt haben, sondern eine persönliche Erklärung durch den Lehrer gewohnt sind, wie sie auch in der Vorlesung gegeben wird. Ohne einen regelmäßigen Besuch der Vorlesung oder ein gründliches Studium des Lehrbuchs ist die selbständige Lösung der Übungsaufgaben kaum möglich. Das Internet wird Ihnen dafür kaum behilflich sein.

Die Teilnahme an den Übungen ist freiwillig, ebenso die Abgabe und Lösung der Übungszettel. Wer die Übungsaufgaben nicht kontinuierlich selber bearbeitet, hat nach den Erfahrungen der letzten Semester keine Chance, die Klausur zu bestehen: Die Klausuraufgaben sind von derselben Art wie Übungsaufgaben!

Mathematik wird nicht gelernt, sondern verstanden. Dafür muss geübt werden. Daher ist eine erstmalige selbstständige Beschäftigung mit dem Lehrstoff erst kurz vor der Klausur ("für die Klausur lernen") für diese Vorlesung absolut ungeeignet. Sie müssen sich kontinuierlich im Semester damit beschäftigen.

Da viele Studienanfänger die Qualität ihrer Arbeit noch nicht gut einschätzen können, ist eine Abgabe und Kontrolle durch die Tutoren sehr zu empfehlen. Sollte sich dann herausstellen, dass Ihre Lösung nicht den Anforderungen entsprach, dann ist der Besuch von großer Übung und Tutorenstunde genau das richtige Forum, um das zu verbessern.

Meine Argumente werden von der Statistik untermauert: Sehen Sie sich bitte die Durchfallquoten auf meine Klausurseite an: Diese Durchfallquoten korrelieren direkt mit der Zahl der abgegebenen Übungsaufgaben im jeweiligen Semester.

Nur der Besuch von großer Übung und einem Tutorium reicht nach meiner langjährigen Erfahrung nicht aus. Sie bestehen nur, wenn Sie die Aufgabe selber lösen und auch abgeben.

 

 

Vorlesungsmaterial

Es gibt zur Vorlesung Folienmaterial, das nebenstehend veröffentlicht und kontinuierlich aktualisiert wird. Außerdem gibt es ein Lehrbuch, das aus dieser Vorlesung entstanden ist und das jedes Detail dieser Vorlesung erklärt und vertieft. Einige Exemplare dieses Lehrbuchs sind auch in unserer Bibliothek erhältlich. Es ist für einen erfolgreichen Besuch dieser Lehrveranstaltung nicht zwingend erforderlich, mit diesem Lehrbuch zu arbeiten. Dazu reichen die Vorlesungsfolien, die Erklärungen an der Tafel und in den Übungen aus. Aber für viele wird das Buch zusätzlichen Nutzen bringen, vor allem wenn Sie einzelne Lehrveranstaltungen versäumt haben.

Die meisten Teile des Vorlesungsinhalts werden ferner durch die Bücher von Dean, Meinel et al. und Beutelspacher et al. und Steger abgedeckt (in dieser chronologischen Reihenfolge). Allerdings decken alle anderen Bücher immer nur einen Teil dieser Lehrveranstaltung ab. Einige Exemplare dieser Bücher finden Sie ebenfalls in der Hochschulbibliothek.

In den Vorlesungseinheiten werden die auf den Folien angegebenen Inhalte hauptsächlich an der Tafel präsentiert und mit Beispielen erläutert. Die Lehrinhalte und weitere Beispiele können im Lehrbuch oder in den zu jedem Kapitel angegebenen alternativen Literaturstellen zur Vertiefung nachgelesen werden.

Zur Übung mit endlichen Körpern (Kap. 5.2) gibt es mehrere Programme, die im Rahmen eines Softwareprojekts entstanden sind und hier heruntergeladen werden können.