Shortest Path Algorithms: Traditional vs. Innovative Approach

Prof. Dr. Sebastian Iwanowski

FH Wedel, University of Applied Systems, Germany Guest Lecturer at Haaga-Helia Ammattikorkeakoulu Class Innovation Topics, Wednesday 16. September 2015

Shortest Path Problem

Navigation Problem:

Given a map with nodes and connecting edges, each edge beiing assigned a number (for travel time/cost/etc.):

For a certain source and destination, find the shortest path.

FH Wedel Prof. Dr. Sebastian Iwanowski Shortest Path slide 2

Shortest Path Problem

Abstract Graph Problem:

A graph (V,E) is a construct made of *vertices* and *edges*: An edge always connects two vertices. These vertices are the *endpoints* of the edge.

Find the shortest path from A to Z.

Example for Dijkstra's algorithm

Shortest path from A to Z:

Result: $A \rightarrow G \rightarrow E \rightarrow Z$ (18 units) Node (distance from G, direct predecessor): B(4,A) C(6,G) **C(∞)** C(11,B) D(∞) **D(**∞**)** D(∞) D(∞) **D(∞)** D(19,E) \rightarrow \rightarrow \rightarrow E(14,G) **E(∞)** \rightarrow E(∞) E(14,G) E(14,G) \rightarrow F(10,A) F(10,A) F(10,A) F(10,A) G(5,A) G(5,A) Z(18,E) Z(∞) Z(19,Z) Z(∞) Z(∞) Z(19,Z)

Pseudocode for Dijkstra's algorithm

Dijkstra's algorithm for weighted graphs

(special case of best first search)

For all edges (u,v) there is a weight function: length (u,v) := length of an edge from node u to node v

Requirement for edge weights:

All lengths have to be nonnegative.

Algorithm for the search of a path from A to B having minimal total edge length:

- Put A into the set Done. Label A by distance(A) := 0.
 Put all other nodes into the set YetToCompute.
 Label all neighbors N of A by distance (N) := length (A,N) and all othe nodes by distance (V) := ∞.
- Repeat:

Choose node V from **YetToCompute** with minimum *distance* (V) and shift V to the set **Done**.

Update all neighbors N of V that are still in **YetToCompute**:

```
distance (N) := min {distance (N), distance (V) + length (V,N)}.
```

until V = B

Navigation considering the current quality of road segments

Prerequesites for the system:

• Continuous provision of latest infos about any road segment

not a topic of this work!

Scenario for future navigation systems:

- All info is available for all road segments at any time.
- Individual request asks for the best road from the present position to a chosen destination considering all infos at the time of query.

This makes an on-board computation of the route unfeasible!

Navigation considering the current quality of road segments

Google from: Copenhagen Star Hotel, Colbjørnsensgade, Dänemark to: DTU by Route berechnen Meine Orte GĐ × So Copenhagen Star Hotel, Colbjørnsensgade, Då B DTU bygning 101, HAL, Anker Engelunds Vej Ziel hinzufügen - Optionen anzeigen **ROUTE BERECHNEN** Vorgeschlagene Routen Ŧ Route 19 14,9 km, 20 Minuten Bei aktueller Verkehrslage: 26 Minuten E55 19.2 km. 21 Minuten Bei aktueller Verkehrslage: 28 Minuten Tuborgvej/O2 und Route 19 16,4 km, 22 Minuten Bei aktueller Verkehrslage: 29 Minuten Oder mit öffentlichen Verkehrsmitteln 39 Minuten (ein Umstieg) Route nach DTU bygning 101, HAL 3D>

Copenhagen Star Hotel Colbjørnsensgade 13 1652 København V, Dänemark

1. Auf Colbjørnsensgade nach Nordwesten Richtung Istedgade starten

19 m

Q

Navigation considering the current quality of road segments

Google from: Copenhagen Star Hotel, Colbjørnsensgade, Dänemark to: DTU by Q -Route berechnen Meine Orte ÷ C-D -Eremitagesletten 152 × Dyrehaven 80 . Klampenborg andersø Aldershvile Bagsværd Sø Slotspark Copenhagen Star Hotel, Colbjørnsensgade, Då Store †↓ Hareskov DTU bygning 101, HAL, Anker Engelunds Vej Bagsværd 04 Kongen Lynaby Ziel hinzufügen - Optionen anzeigen **ROUTE BERECHNEN** Charlottenlund Gentofte Vorgeschlagene Routen Route 19 14.9 km, 20 Minuten Bei aktueller Verkehrslage: 26 Minuten Hellerup Søbora Herley E55 19,2 km, 21 Minuten rup Byvei Bei aktueller Verkehrslage: 28 Minuten Mindelunde Ballerup. Ballerup Blvd Ryvangen Tuborgvej/O2 und Route 19 16,4 km, 22 Minuten Nordhavn Bei aktueller Verkehrslage: 29 Minuten Kagsmosen Skovlunde 0 Østerbro Oder mit öffentlichen Verkehrsmitteln 39 Minuten Brønshøj (ein Umstieg) Husum 211 Route nach DTU bygning 101, HAL 3D Vestskoven Copenhagen Star Hotel Colbjørnsensgade 13 Ο 1652 København V, Dänemark Damhusenger Aktuelle Verkehrslage Langsam Schnell maliehaven Ändern 1. Auf Colbjørnsensgade nach Nordwesten Frederiksberg Damhussa Κø hav Richtung Istedgade starten A Meile/n Rødov hristianshavn 19 m Rentendate

Navigation considering the current quality of road segments

Navigation considering the current quality of road segments

GoogleMaps as a state-of-the-art provider using current infos:

- Google does off-board computation
- Google gives you the three routes with the expected driving time considering the current situation at time of query

Our problem:

• We do not know how Google computes the best routes so fast.

This would already be a motivation to investigate how to do this on our own

But tests show:

- Google does **not** give you **the best** routes considering the **current situation**
- Google rather computes the best routes for the normal situation and adapts the time forecast for these routes considering the best situation.

Open problem:

• How to compute the best routes considering the current situation?

How ant colonies solve dynamic routing

Principal concept (nature and simulation)

- Each ant sets pheromones continuously walking on its path.
- At junctions, the probability that an ant decides for a certain direction is proportional to the pheromone concentration towards this direction.
- It makes a difference if an ant is on the search for food or on its return path:
 - a) Each ant returns the same path back as it came there (as soon as it found food).
 - b) For either direction different pheromone types are used. *Nature*

How ant colonies solve dynamic routing

Advantages of probabilistic decision making: Example (alt. a)

Artificial Ant Systems

How do we simulate ant behaviour for the routing problem?

Different pheromones for different destinations

- Each node has got a routing table
- This looks exactly like routing tables in a computer network

table F					
Next	С	G	E		/
Dest					D
А	0.3	0.65	0.05		A
В	0.5	0.35	0.15		В
С	0.9	0.05	0.05		D
D	0.9	0.05	0.05		Е
E	0.05	0.05	0.9		F
G	0.6	0.35	0.05		G

table C							
Next	А	В	D	F			
Dest							
А	0.7	0.1	0.1	0.1			
В	0.05	0.85	0.05	0.05			
D	0.05	0.05	0.85	0.05			
E	0.25	0.05	0.05	0.65			
F	0.15	0.05	0.05	0.75			
G	0.6	0.05	0.05	0.3			

This need not necessarily correspond to the current traffic situation !

Artificial Ant Systems

Algorithmic processing

Alternating phases:

Construction of a route and update of pheromone values

Continuously, ants are generated from each source to each destination

Tasks of an ant running from ist source to its destination (forward ant phase):

- At each intersection, choose next edge probabilistically (according to current table entries)
- Collect and store the encountered information (edge lengths, etc.)
- Start the individual pheromone update phase for this ant when destination is reached

Tasks of the pheromone update for a single ant (backward ant phase):

- Trace back the path the corresponding ant used
- Update node infos according to the real-time information the forward ant collected

A simple strategy for pheromone update

$$\Delta P_{s,d} = \frac{c_1}{t_{s,d}} + c_2$$

Evaporation coefficient:

This number is used to confirm the path, the ant has really used, and – simultaneously – to deminish the paths, the ant has NOT used.

Evaporation of pheromones for edges not used

$$P_{d,i} = \frac{P_{d,i}}{1 + \Delta P_{s,d}} \forall i \neq f$$

Confirmation of pheromones for edges used

$$P_{d,f} = \frac{P_{d,f} + \Delta P_{s,d}}{1 + \Delta P_{s,d}}$$

- s ... source of ant
- d ... destination of ant
- $\mathsf{F} \ldots$ node which was next for ant in order to reach destination

Simple example for pheromone update

Constructing the route (forward ant phase)

$$\frac{\text{memory}}{\text{s} = F \quad d = B}$$
$$t_{F,C}=1.5 \quad t_{C,B}=0.5$$

Table for C (extract)							
	Next	А	В	D	F		
Dest							
В		0.05	0.85	0.05	0.05		

Simple example for pheromone update

Updating the pheromones (backward ant phase):

Simple example for pheromone update

Updating the pheromones (backward ant phase):

Homework assignment 1: traditional approach

Find the shortest path from G to Z simulating Dijkstra's algorithm (cf. slides 4/5)!

Homework assignment 2: innovative approach

Consider the following network and the corresponding pheromone tables:

i) Generate an ant in G with destination B and let it run via A and C to B. Update the pheromone tables according to the presented method with the constants c1=c2=1, but without the restriction that at least 0,05 must remain as remainder probability.

ii) Generate now a second ant in G with destination B and let it run via F and C. Update the pheromone tables according to the presented method as in i).

Exchange the order of i) and ii): What do you observe?