Shortest Path Algorithms: Traditional vs. Innovative Approach

Prof. Dr. Sebastian Iwanowski

FH Wedel, University of Applied Systems, Germany Guest Lecturer at Haaga-Helia Ammattikorkeakoulu Class Innovation Topics, Wednesday 16. September 2015

Shortest Path Problem

Navigation Problem:

Given a map with nodes and connecting edges, each edge beiing assigned a number (for travel time/cost/etc.):
For a certain source and destination, find the shortest path.

Shortest Path Problem

Abstract Graph Problem:

A graph (V, E) is a construct made of vertices and edges:
An edge always connects two vertices. These vertices are the endpoints of the edge.

Find the shortest path from A to Z .

Example for Dijkstra‘s algorithm

Shortest path from A to Z:
Node (distance from G, direct predecessor):

Result: $A \rightarrow G \rightarrow E \rightarrow Z$ (18 units)

$B(4, A)$
$C(\infty)$

$$
\mathrm{C}(11, \mathrm{~B}) \quad \mathrm{C}(6, \mathrm{G})
$$

Pseudocode for Dijkstra‘s algorithm

Dijkstra's algorithm for weighted graphs

(special case of best first search)
For all edges (u, v) there is a weight function:
length (u, v) := length of an edge from node u to node v
Requirement for edge weights:
All lengths have to be nonnegative.

Algorithm for the search of a path from A to B having minimal total edge length:

- Put A into the set Done. Label A by distance(A) := 0 .

Put all other nodes into the set YetToCompute.
Label all neighbors N of A by distance (N) := length (A, N) and all othe nodes by distance $(\mathrm{V}):=\infty$.

- Repeat:

Choose node V from YetToCompute with minimum distance (V) and shift V to the set Done.
Update all neighbors N of V that are still in YetToCompute: distance $(\mathrm{N}):=\mathrm{min}\{$ distance (N), distance $(\mathrm{V})+$ length (V, N) \}.
until $\mathrm{V}=\mathrm{B}$

Dynamic Routing

Navigation considering the current quality of road segments

Prerequesites for the system:

- Continuous provision of latest infos about any road segment

not a topic of this work!

Scenario for future navigation systems:

- All info is available for all road segments at any time.
- Individual request asks for the best road from the present position to a chosen destination considering all infos at the time of query.

This makes an on-board computation of the route unfeasible!

Dynamic Routing

Navigation considering the current quality of road segments

Google
from: Copenhagen Star Hotel, Colbjørnsensgade, Dänemark to: DTU by
Q

| Route berechnen | Meine Orte | |
| :---: | :---: | :---: | :---: |
| 亳 | | |
| Copenhagen Star Hotel, Colbjernsensgade, D | | |

B) DTU bygning 101, HAL, Anker Engelunds Vej Ziel hinzufügen - Optionen anzeigen

ROUTE BERECHIEN

- Vorgeschlagene Routen

Route 19
$14,9 \mathrm{~km}, 20$ Minuten - Bei aktueller Verkehrslage: 26 Minuten

E55
19,2 km, 21 Minuten - Bei aktueller Verkehrslage: 28 Minuten

Tuborgvej/O2 und Route $19 \quad 16.4 \mathrm{~km}, 22$ Minuten - Bei aktueller Verkehrslage: 29 Minuten

Oder mit öftentlichen Verkehrsmitteln 39 Minuten (ein Umstieg)

Route nach DTU bygning 101, HAL 3D>
A Copenhagen Star Hotel
Colbjernsensgade 13
1652 Kobenhavn V, Dänemark

1. Auf Colbjørnsensgade nach Nordwesten Richtung Istedgade starten

[^0]
Dynamic Routing

Navigation considering the current quality of road segments

Google
(B)
 Ziel hinzufügen - Optionen anzeigen

```
ROUTE BERECHMEN
```

- Vorgeschlagene Routen

Route 19
$14,9 \mathrm{~km}, 20$ Minuten - Bei ahtueller Verkehrslage: 26 Minuten

E55
19,2 km, 21 Minuten

- Bei aktueller Verkehrslage: 28 Minuten

Tuborgvej/O2 und Route $19 \quad 16,4 \mathrm{~km}, 22$ Minuten - Bei aktueller Verkehrslage: 29 Minuten

Oder mit öffentlichen Verkehrsmitteln 39 Minuten (ein Umstieg)

Route nach DTU bygning 101, HAL 3D>
Copenhagen Star Hotel
Colbjernsensgade 13
1652 Kobenhavn V, Dänemark

1. Auf Colbjørnsensgade nach Nordwesten Richtung Istedgade starten

Dynamic Routing

Navigation considering the current quality of road segments

Google
from: Copenhagen Star Hotel, Colbjørnsensgade, Dänemark to: DTU by
a

Dynamic Routing

Navigation considering the current quality of road segments

GoogleMaps as a state-of-the-art provider using current infos:

- Google does off-board computation
- Google gives you the three routes with the expected driving time considering the current situation at time of query

Our problem:

- We do not know how Google computes the best routes so fast.

This would already be a motivation to investigate how to do this on our own

But tests show:

- Google does not give you the best routes considering the current situation
- Google rather computes the best routes for the normal situation and adapts the time forecast for these routes considering the best situation.

Open problem:

- How to compute the best routes considering the current situation?

How ant colonies solve dynamic routing

Ants searching for food

How ant colonies solve dynamic routing

Principal concept (nature and simulation)

- Each ant sets pheromones continuously walking on its path.
- At junctions, the probability that an ant decides for a certain direction is proportional to the pheromone concentration towards this direction.
- It makes a difference if an ant is on the search for food or on its return path:
a) Each ant returns the same path back as it came there (as soon as it

Simulation found food).
b) For either direction different pheromone types are used.

Nature

How ant colonies solve dynamic routing

Advantages of probabilistic decision making: Example (alt. a)

Artificial Ant Systems

How do we simulate ant behaviour for the routing problem?

Different pheromones for different destinations

- Each node has got a routing table
- This looks exactly like routing tables in a computer network

table F			
	Next	C	G
Dest			
A	0.3	0.65	0.05
B	0.5	0.35	0.15
C	0.9	0.05	0.05
D	0.9	0.05	0.05
E	0.05	0.05	0.9
G	0.6	0.35	0.05

table C				
Nest	A	B	D	F
A	0.7	0.1	0.1	0.1
B	0.05	0.85	0.05	0.05
D	0.05	0.05	0.85	0.05
E	0.25	0.05	0.05	0.65
F	0.15	0.05	0.05	0.75
G	0.6	0.05	0.05	0.3

This need not necessarily correspond to the current traffic situation!

Artificial Ant Systems

Algorithmic processing

Alternating phases:
 Construction of a route and update of pheromone values

Continuously, ants are generated from each source to each destination

Tasks of an ant running from ist source to its destination (forward ant phase):

- At each intersection, choose next edge probabilistically (according to current table entries)
- Collect and store the encountered information (edge lengths, etc.)
- Start the individual pheromone update phase for this ant when destination is reached

Tasks of the pheromone update for a single ant (backward ant phase):

- Trace back the path the corresponding ant used
- Update node infos according to the real-time information the forward ant collected

A simple strategy for pheromone update

$\Delta P_{\mathrm{s}, \mathrm{d}}=\frac{c_{1}}{t_{\mathrm{s}, \mathrm{d}}}+c_{2} \quad$ Evaporation coefficient:

Evaporation of pheromones for edges not used

$\mathrm{P}_{\mathrm{d}, \mathrm{i}}=\frac{\mathrm{P}_{\mathrm{d}, \mathrm{i}}}{1+\Delta \mathrm{P}_{\mathrm{s}, \mathrm{d}}} \forall \mathrm{i} \neq \mathrm{f}$
Confirmation of pheromones for edges used

$$
P_{d, f}=\frac{P_{d, f}+\Delta P_{\mathrm{s}, \mathrm{~d}}}{1+\Delta \mathrm{P}_{\mathrm{s}, \mathrm{~d}}}
$$

s ... source of ant
d ... destination of ant
F ... node which was next for ant in order to reach destination

Simple example for pheromone update

Constructing the route (forward ant phase)

memory

$$
s=F \quad d=B
$$

$$
\mathrm{t}_{\mathrm{F}, \mathrm{C}}=1.5 \quad \mathrm{t}_{\mathrm{C}, \mathrm{~B}}=0.5
$$

Table for C (extract)					
Nest	A	B	D	F	
B					

Simple example for pheromone update

Updating the pheromones (backward ant phase):

memory

$$
\begin{aligned}
& s=F \quad d=B \\
& t_{F, C}=1.5 \quad t_{C, B}=0.5
\end{aligned}
$$

Old Table for C (extract)					
Dest	Next	A	B	D	F
B		0.05	0.85	0.05	0.05

Choice for
evaporation formula:
c1=2, c2=1

$$
\mathrm{t}_{\mathrm{C}, \mathrm{~B}}=0.5
$$

$\Delta P=\frac{2}{0.5}+1=5$
$P_{\text {new, }} A=\frac{0.05}{1+5}=0.01$
$P_{\text {new }, B}=\frac{0.85+5}{1+5}=0.97$
$P_{\text {new , } D}=\frac{0.05}{1+5}=0.01$
$P_{\text {new }, F}=\frac{0.05}{1+5}=0.01$

Simple example for pheromone update

Updating the pheromones (backward ant phase):

memory

$$
s=F \quad d=B
$$

$$
t_{F, C}=1.5 \quad t_{C, B}=0.5
$$

Old Table for F (extract)				
	Next	C	G	E
Dest				
B		0.5	0.35	0.15

New Table for F (extract)				
	Next	C	G	E
Dest				

Choice for evaporation formula: c1=2, c2=1

$$
t_{F, B}=2
$$

$$
\begin{aligned}
& \Delta \mathrm{P}=\frac{2}{2}+1 \\
& \mathrm{P}_{\mathrm{new}, \mathrm{C}}=\frac{0.5+2}{1+2}=0,83 \\
& \mathrm{P}_{\mathrm{new}, \mathrm{G}}=\frac{0.35}{1+2}=0,12 \\
& \mathrm{P}_{\mathrm{new}, \mathrm{E}}=\frac{0.15}{1+2}=0,05
\end{aligned}
$$

Homework assignment 1: traditional approach

Find the shortest path from G to Z simulating Dijkstra's algorithm (cf. slides 4/5)!

Homework assignment 2: innovative approach

Consider the following network and the corresponding pheromone tables:

i) Generate an ant in G with destination B and let it run via A and C to B. Update the pheromone tables according to the presented method with the constants c1=c2=1, but without the restriction that at least 0,05 must remain as remainder probability.
ii) Generate now a second ant in G with destination B and let it run via F and C. Update the pheromone tables according to the presented method as in i).

Exchange the order of i) and ii): What do you observe?

[^0]: FH Wedel Prof. Dr. Sebastian Iwanowski Shortest Path slide 7

