Workshop on Artificial Intelligence in Practice

Part 2:
Al Details
and Applications in Navigation and Public Service

Sebastian Iwanowski
FH Wedel (D)
Erasmus Workshop at Fontys University, Eindhoven (NL)
Section 1: Why ants find shortest paths

Nature sets the standard

Ants as traffic participants

Ants find good paths

- Coordination for seeking food
- Adaptation for changes in the environment

Targets in traffic network optimization

- Shortest path
- Fastest path
- Most comfortable path
- Use dynamic information

Nature sets the standard

Fundamental principle of ant coordination

- Each ant deposits pheromones continuously.
- For junctions, the probability that an ant proceeds on a specific segment is proportional to the pheromone concentration on this segment.
- It can be distinguished if an ant is on the way towards the food supply or on the way back (carrying food):
a) Each ant returns the same way back (as soon as it found food).
b) For the ways forth and back, different types of pheromones are used.

Nature sets the standard

Advantages of probabilistic decision making: Example (type a)

Distances

T4: $\quad 30$ new ants

Nature sets the standard

Advantages of probabilistic decision making: summary

Autocatalysis

- Positive feedback using pheromones
- The higher the pheromone concentration, the more ants will use the path and increase pheromone concentration.

Implicite problem solving

- The shorter a path, the more ants use it in the same time which makes pheromone concentration increasing faster.

Conclusion from these properties

- An overwhelming majority of ants will use the shortest path quickly.

Nature sets the standard

Advantages of natural evaporation

Problem: Stagnation

- Fairly good solutions at the beginning get enforced quickly.
- Risk: Avarage ants find only avarage solution.
- Algorithm converges too fast before optimum is found.
- Gradual deterioration of path will not be realized.

Solution: Evaporation of pheromones

- Limitation for the difference of pheromone concentration
- New information counts more than old one.
- Compromise between confirmation and new search

Artificial Ant Systems

Real ants vs. artificial ants

Common features

- Emergence: Super-organism made of simple communicating individuals
- Stigmergy: Indirect communication via pheromones
- Decisions are limited to a short local range
- Decision parameters come from a local short-sighted range
- Continuous adaptation to changes

Features in which artificial ants differ

- Discrete world, discrete transition states via timing cycles
- State variables, memory
- Pheromone dopping may be directly correlated to solution quality.
- Pheromone dropping may be retarded.
- Further problem specific capabilities of the single ants

