Workshop on Artificial Intelligence in Practice

Part 1:

Al Targets and Applications in Technics and Logistics

Sebastian Iwanowski FH Wedel (D) Erasmus Workshop at Fontys University, Eindhoven (NL)

Section 2: Applications in Technical Diagnosis

Technical Diagnosis

Run time system:

(in knowledge-based systems called problem solver / inference engine)

Input:

- Set of determined values in the system (control inputs)
- Measurement of resulting values in the system (observations)

Output:

• A unique prescription which components have to be repaired in which way

All different diagnostic techniques feature this specification !

Technical Diagnosis

Knowledge processing:

1) Knowledge acquisition

- rule-based (symptom-based)
- model-based
- case-based

2) Structure of knowledge base

• depends on knowledge acquisition

3) Knowledge processing in the inference engine

• depends on structure of knowledge base

This is where different diagnostic techniques differ !

alternatively

Input to knowledge base:

- Causing or permanent faults in the complete system
- Possible symptoms (measurements)
- Dependencies between symptoms and faults (as rules)
 - Certain symptoms may confirm or even explain a fault
 - Certain symptoms may disconfirm or even exclude a fault.

Structure of knowledge base:

- Semantic network of rules
- Possible instantiations:
 - Fault networks
 - Decision trees

This is the classical "expert system technology"

Example for elements of a symptom-based knowledge base:

FH Wedel Prof. Dr. Sebastian Iwanowski Workshop Fontys 1.2 Slide 5

Example for a decision tree:

Functionality of inference engine:

• Navigation in semantic network (e.g., fault tree or decision tree)

• Feasible starting points of navigation:

- Faults suspected
- Symptoms observed
- Main work consists of evaluating and firing rules:
 - Conclusions of rules are inserted into antecedents of other rules.
 - Add-on: working with probabilities and fuzzy rules

Such input must be provided by knowledge acquisition component.

Advantages und Disadvantages:

- Knowledge structure corresponds to expert knowledge.
 - easy to use by an expert
 - Knowledge acquisition costs a lot of time.

• Knowledge is represented very goal-oriented.

- quick run time component
- difficult to alter the knowledge base
- Reusability is a problem.
- However, there are techniques to enable reusability.
- Knowledge has shallow structure.
 - All application domains are feasible in principle.
 - Knowledge base is likely incomplete.
 - Knowledge base is unstructured and difficult to be verified.

A lot of knowledge bases are faulty.

Targets:

- fast knowledge acquisition
- correct and easily verifyable results by inference engine

Challenging difficulty:

• Reasonably fast run-time component

Basic functionality cycle

FH Wedel Prof. Dr. Sebastian Iwanowski Workshop Fontys 1.2 Slide 12

Basic functionality cycle

GDE 1987: The prototype for model-based diagnosis

original problem:

 brute force simulation of *all* fault hypotheses is not feasible due to combinatorial explosion

idea: General Diagnostic Engine GDE, deKleer & Williams 1987

- intelligent search in the space of all possible fault hypotheses
- uses inconsistencies among assumptions to cut the search space
- underlying principle: conflict-driven search

adders:

measurements:

mode=ok \Rightarrow out = in₁ + in₂

 $g = 10 \land h = 12$

GDE: example

Example showing why the previous example does not cover all needs required in practice:

Observation:

L1, L2 are dark, L3 is lit

GDE diagnoses:

1. (B ok, L1 defect, L2 defect, L3 ok)

2. (B defect, L1 ok, L2 ok, L3 defect) ???

3. (B defect, L1 ok, L2 ok, L3 ok)

???

Models for electrical components:

value domains:

```
a1, a2 ∈ { ground, supplyVoltage }
z ∈ { lit, dark }
```

rules:

```
ok \land (a1 = supplyVoltage) \land (a2 = ground) \Rightarrow (z = lit)
ok \land (a2 = supplyVoltage) \land (a1 = ground) \Rightarrow (z = lit)
ok \land (a1 = supplyVoltage) \land (a2 = supplyVoltage) \Rightarrow (z = dark)
ok \land (a1 = ground) \land (a2 = ground) \Rightarrow (z = dark)
```

```
ok \land (a1 = ground) \land (z = lit) \Rightarrow (a2 = supplyVoltage)
ok \land (a1 = supplyVoltage) \land (z = lit) \Rightarrow (a2 = ground)
ok \land (a1 = ground) \land (z = dark) \Rightarrow (a2 = ground)
ok \land (a1 = supplyVoltage) \land (z = dark) \Rightarrow (a2 = supplyVoltage)
```

```
ok \land (a2 = ground) \land (z = lit) \Rightarrow (a1 = supplyVoltage)
ok \land (a2 = supplyVoltage) \land (z = lit) \Rightarrow (a1 = ground)
ok \land (a2 = ground) \land (z = dark) \Rightarrow (a1 = ground)
ok \land (a2 = supplyVoltage) \land (z = dark) \Rightarrow (a1 = supplyVoltage)
```

Composing the system model from the component models:

Values at connecting ports must be equal for both adjacent components In case of contradictory values: conflict among the supporting behavioural model assumptions Diagnoses are complete assignments of behavioural modes not containing any conflict

Conclusions from the previous modeling:

There is no logical contradiction to the following diagnosis:

2. (B defect, L1 ok, L2 ok, L3 defect)

Reason:

L3 may be lit in fault mode, even when there is no voltage difference.

Incompleteness of knowledge base !

Even worse:

If a rule is only applied when there are actual values for ist antecedents, then no contradiction can be found for the following diagnosis:

3. (B defect, L1 ok, L2 ok, L3 ok)

Reason:

No voltage values are computed at all.

Insufficient reasoning ability of inference component

Solution of the previous dilemma: Add additional rules in order to prevent diagnoses 2 / 3:

In order to exclude physically impossible predictions, there must be rules for faulty behaviour, too.

Basic functionality:

Input:

- Set of determined values in the system (control inputs)
- Measurement of resulting values in the system (observations)

Output:

- Several diagnoses of the following kind:
 - Each diagnosis assigns exactly one behavioural mode to every component: For each component, the mode is either ok or a specified fault mode
 - The rules of all assigned modes are consistent with all input values (controlled or observed)

What do we want?

Input: see above

Output:

• A unique prescription which components have to be repaired in which way

Extended functionality:

1) Proposal of control inputs

• Set certain values at certain places in the system

(such that the expected obervations distinguish best among the currently valid diagnoses)

2) Proposal of observation points

• Select places in the system where to measure the value (such that the outcome distinguishes best among

the currently valid diagnoses)

The component models must supply:

- Definition of test ports
- Definition of test values to be plugged in at test ports
- Definition of observation ports where to measure the values

7	les	st		

Observations

Modeling components

Behavioural modes

- Feature of the component which is to be determined from the diagnostic process
- Value domain is finite (normally much less than 10 values possible)

Variables

- Value container
- The values are used in the constraints (see below).
- The constraints compute (predict) a new value for (another) variable.

Ports

• Contains the variables which have to be identified with the variables of the ports of another component which is connected through this port.

Constraints

- Set of behavioural rules establishing a logical connection between the variables of this component
- Typically, the antecedent of a constraint contains an assumption for the behavioural mode of this component.

Control actions

- Variables and values to be assigned
- Level for accessibility and difficulty to set a certain value

Observations

- Variables
- Level for accessibility

Distinguish between internal and port variables!

FH Wedel Prof. Dr. Sebastian Iwanowski Workshop Fontys 1.2 Slide 25

Fault modes:

empty

no contact at +

no contact at -

loose contact at +

loose contact at - corroded

- **Control actions:** open terminal at +
 - open terminal at -
 - close terminal at +
 - close terminal at -

Observations: inspect terminals

- Measure voltage at +
- Measure voltage at -

FH Wedel Prof. Dr. Sebastian Iwanowski Workshop Fontys 1.2 Slide 27

Fault modes:

no contact at a₁

no contact at a₂

no contact at a₃

loose contact at a₁

loose contact at a_2

loose contact at a₃

Control actions: close contact at a₁

close contact at a₂

close contact at a_3

open contact at a_1

open contact at a₂

open contact at a_3

Observations: inspect contacts