
FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 1

Applications of Artificial Intelligence

Sebastian Iwanowski

FH Wedel

Chapter 2:

Logic- and Rule-Based Programming

Using the Example of Prolog

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 2

Literature for Prolog

Textbooks:

P. Blackburn, J. Bos, K. Striegnitz: Learn Prolog Now!,

 Texts in Computing Vol. 7, King's College Publications. 2006, ISBN 1-904987-17-6.

 Companion website with on-line version: www.learnprolognow.org

Ivan Bratko: PROLOG, Programming for Artificial Intelligence,

 2nd Edition, Pearson 1990, ISBN 0-201-41606-9

 3rd Edition, Pearson 2001, ISBN 0-201-40375-6

 4th Edition, Pearson 2011, ISBN 0-321-41746-6

 Companion website with Prolog code: www.pearsoned.co.uk/bratko

Max Rohde: Eignung logischer Programmiersprachen für Spiele-KI am Beispiel Prolog,

 FH Wedel, Iwanowski, SS 2007, Informatik-Seminar zur Spiele-KI

Peter Bothner / Wolf-Michael Kähler: Programmieren in PROLOG (in German),

 Eine umfassende praxisgerechte Einführung,

 Vieweg 1991, ISBN 3-528-05158-2

gibt auch einen Überblick über Prolog und enthält weiterführende Literaturliste

Seminar presentation (in German):

http://www.learnprolognow.org/

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 3

 Elements of PROLOG

• atoms

Elementary components:

• variables

• predicates

• lists

name where the first character is a small literal

name where the first character is a capital literal, exception: _

terms of the type atom(term), atom(term,term) or ...

2 predicates are equal, if their name is the same atom and the number of

parameters is the same.

[] or [term | list]

short notation: [1,2,3,4] for [1 | [2 | [3 | [4 | []]]]]

• numbers

Integer and real numbers are distinguished (1 ≠ 1.0).

• terms

numbers, atoms, variables, lists or expressions like atom(term), atom(term,term) or ...

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 4

 Elements of PROLOG

Logic operators between predicates:

• conjunction

• implication

• equivalence

• antiequivalence (exor)

a , b corresponds to: a ∧ b

a :- b corresponds to: b → a

a = b corresponds to: b ↔ a

a \= b corresponds to: b ↮ a

• version-specific operators for comfort

member, length, ...

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 5

 Elements of PROLOG

Arithmetic operators

• +, -, *, /, div, mod

Arithmetic expressions are always formed in infix notation.

Evaluation of arithmetic expressions

• not automatically!

• when a variable is assigned an expression

varname is arithmetic expression

Result of the arithmetic expression is assigned to the variable.

• using special logic operators with evaluation capability

<, =<, > >=. =:=, =\= evaluate arithemtic expressions on either side.

(in some implementations only on one side)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 6

 Elements of PROLOG

Knowledge in form of clauses

• facts

• rules

predicate.

Such predicates are assumed to be true in the knowledge base.

predicate :- conjunction of predicates.

The concluding predicate (on the left) is considered true

if the proposition (on the right) has to be assumed true.

For the same concluding predicate there may be different rules.

• queries

?- conjunction of predicates.

Prolog tries to derive the truth of a query from the known facts and rules.
If this derivation is successful, the answer is yes and the values

necessary to bind on a variable for the verification are output.
Otherwise the answer is no.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 7

 Elements of PROLOG

Prolog’s special handling of not

• Most versions of Prolog provide a concept for negation

not Term

\+ Term

Term1 =\= Term2

Prolog evaluates these predicates to true if it cannot prove that Term is
true resp. Term1 = Term2.

Warning:

This is not the same as that Prolog can prove
that Term is false resp. Term1 ≠ Term2

Consequence:

Strict mathematical problem solvers better avoid using negation.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 8

 Functionality of a PROLOG interpreter

PROLOG is knowledge-based:

• Knowledge base

• Inference engine

Facts and rules, dynamically extensible

• Dialog component

deriving facts and rules automatically using the inference

techniques resolution und unification

Input: Query

Output: yes / no, Specification of used unification in case of success, write as a

„side effect“

Yes: The predicate of the query can be concluded from knowledge base.

No: The predicate of the query cannot be concluded from knowledge base.

 No does not imply that it can be concluded that the predicate is false.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 9

 Functionality of a PROLOG interpreter

How the inference engine works:

• Decomposition of a goal into subgoals

First goal is the original query.

Prolog tries to achieve the goal with unifications of the predicates of the knowledge base.

This makes the predicates to subgoals.

• Order of evaluation

All data of the knowledge base are evaluated from top to bottom.

Conjunctions of rule propositions are evaluated from left to right.

The evaluation order does not distinguish between facts and rules.

• Instantiation of variables

Variables are instantiated with values only for the sake of unification.

The current instantiation is removed after definite success or failure of unification with this value.

• Backtracking

Failure of a unification automatically initiates a new instantiation.

Deep backtracking: Try the verification with a different value in the proposition for the same rule.

Shallow Backtracking: Try to verify a different rule implying the same predicate.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 10

 PROLOG: Simple example

father(sven,georg).

brother(holger,anna).

married(sven, anna).

male(X) :- father(X,Y).

male(X) :- brother(X,Y).

uncle(X,Y) :- father(Z,Y), brother(X,Z).

uncle(X,Y) :- mother(Z,Y), brother(X,Z).

mother(X,Y) :- father(Z,Y), married(X,Z).

female(X) :- married(X,Z), male(Z).

married(X,Y) :- married(Y,X).

• Predicate world from first semester:

Knowledge base:

Queries:

isMarried(X,Y) :- married(X,Y).
isMarried(X,Y) :- married(Y,X).

better:

?- isMarried(holger,X).

In ISO-Prolog this does not work!

Declarative alternative

without problems with

symmetric predicates: XSB

http://xsb.sourceforge.net/

?-female(anna).

?-male(georg).

?-uncle(holger,georg).

?-male(X).

?-married(holger,X).

http://xsb.sourceforge.net/

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 11

 PROLOG: More complicated example

• 8 queens problem (1st solution of Bratko)

Knowledge base:

queens1([]).

queens1([X/Y | Others]) :-

 queens1(Others),

 member(Y,[1,2,3,4,5,6,7,8]),

 conflictFree(X/Y,Others).

conflictFree(_,[]).

conflictFree(X/Y, [HeadX/HeadY | Others]) :-

 Y =\= HeadY,

 DiffY is HeadY - Y,

 DiffY =\= HeadX - X,

 DiffY =\= X - HeadX,

 conflictFree(X/Y,Others).

template([1/Y1,2/Y2,3/Y3,4/Y4,5/Y5,6/Y6,7/Y7,8/Y8]).

Query:

query for a single answer:

?-template(S), queens1(S).

not: DiffY =:= HeadY-Y

not: HeadY - Y =\= HeadX-X

query for all answers:

?-template(S), queens1(S), write(S), nl, fail.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 12

Base Technology: Logic Programming Language

• Input:

Specification of the problem with a logical description language

• Output:

Response in a logical description language

• Automatically (without specifying algorithms!):

Generation of output from input

• For improvement of efficiency:

Different specifications of the problem are possible and may

influence the output if the automatic generation procedure is well-

understood

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 13

Original goal: Construction task

Given a set ℱ of logic formulae. Determine all formulae that can be logically derived from ℱ .

Easier goal: Verification task

Given a set ℱ of logic formulae and a (new) logic formula F.

Find out if F can be derived from ℱ .

Problems equivalent to the verification task:

1) Given a set ℱ of logic formulae and a (new) formula F. Find out if the set {¬F} ∪ ℱ is

contradictory.

2) Given a set ℱ of logic formulae. Find out if it is contradictory.

Chances to simplify the problem:

Restrict the class of admissible formulae !

not decidable for arbitrary formulae Corresponds to satisfiability problem:

not decidable for arbitrary formulae

less than ever not decidable

for arbitrary formulae

Task for the interpreter:

 Logic programming languages

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 14

 Propositional formulae

• A propositional formula on truth values is a combination of finitely

many literals with operators of propositional logics.

• The instantiation of a formula is an assignment of values true or

false to all literals such that the same literals achieve the same value.

• A formula is satisfiable if there is an instantiation such that the

formula evaluates to true.

• The literals are variables which may assume exactly one of two values.

• The satisfiability problem of propositional logics is always solvable

because there are only finitely many combinations in the potential

solution space which may be tested successively.

• Unfortunately, successive testing takes very long time (exponential in the

number of literals). Until now no more efficient algorithm is known.

Problem is NP-complete !

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 15

 Predicate logics (first order)

Predicate logics extends propositional logics by the following:

• predicates

• functions

• propositions depending on variables.

If a proposition depends on k variables, it is called k-ary.

• unique assignments depending on variables

(if a function depends on k variables, it is called k-ary)

• 0-ary functions are constants.

• quantors

• existence quantor (∃) und all quantor (∀)

• Quantors must be applied to variables only (otherwise not first order)

• variables

• correspond to the literals of propositional logics,

but may assume one out of a set of arbitrarily many values

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 16

 Predicate logics (first order)

A predicate logic formula (first order) is built by the following rules:

• A term is a variable or a k-ary function (using any symbol for the

function name)

• A formula is a k-ary predicate with arbitrary terms as input or the

conjunction, disjunction or negation thereof.

• A formula may also contain quantors applied to variables

Ex.: formula φ = x (R(f(y), g(z,y)) y (P(g(y,z), x) R(y, z)))

Green occurrences of y and z are free.

Red occurences of variables are bound.

Closed formulae (constants): Formulae not containing any free variable.

Open formulae (without quantors): Formulae not containing any bound variable.

Atomic formulae: Formulae consisting of one predicate involving terms only (no

disjunctions, conjunctions or negations)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 17

 Predicate logics (first order)

• The instantiation of a formula is an assignment of values to the

free variables from predefined domains of definition such that

the same variables achieve the same values.

The general problem is unsolvable !

• In predicate logics, the satisfiability problem is not decidable, i.e. no

algorithm may ever exist to decide for an arbitrary formula as input if

the formula is satisfiable or not.

Is there a work-about ?

Yes, solve a more specific problem !

• A formula is satisfiable if there is an instantiation such that the

formula evaluates to true.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 18

PROLOG does not accept arbitrary predicate formulae:

Proposition (Completeness of Horn clause calculus):

For each set of old Horn clauses and a given new Horn clause, Prolog may decide after

finite time if the new clause can be concluded from the old clauses or not.

Remark „Finite time“ includes „very long“ !

• no quantors

p ∧ q ∧ . . . ∧ r → x

Rule (Horn clause)

In the assumption there may be a

conjunction of positive literals only..

Power of Prolog

• In CNF, all clauses must be Horn clauses:

¬p ∨ ¬q ∨ . . . ∨ ¬r ∨ x At most one literal is positive

• Domains for variables and functions are arbitrary.

Rule-based notation of Horn clauses:

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 19

 Use of Prolog

Didactic use:

• good exercise for dealing with formal logics

• exercising recursive formulations of problems and algorithms

Practical use:

• good for a quick test of concepts (rapid prototyping)

• relatively comfortable for simple problems for which no other solution

exists than exhaustive search of all possibilities

• suitable for successive and systematic output of all possible

solutions of a search problem

Limits:

• Rather a toy than a tool of commercial use, too far from practical needs

• totally useless if efficiency of solution is relevant

