
FH Wedel Prof. Dr. Sebastian Iwanowski .Alg5 Slide 1

Algorithmics

Sebastian Iwanowski

FH Wedel

5. String Matching

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg5 Slide 2

 Algorithmics 5

String Matching

References:

Alt, Kap. 4.8

Cormen, ch. 32 (String matching), esp. 32.4 (KMP)

Task: Given a text T = {t1,…,tn} with n literals and a pattern P = {p1,…,pm} with m literals:

Find the starting positions where P occurs in T.

naive algorithm: needs O(nm) time

Algorithm of Knuth-Morris-Pratt: needs O(n) time

Def.: The prefix function π: ℕ\{0} → ℕ for the pattern P is defined as:

π(q) = k ⇔ k is the length of the longest strict prefix of Pq (strict means: k < q)

which is also a Suffix of Pq

Def.: Pq denotes the prefix of P consisting of the first q literals. (Pq = P[1],…,P[q])

General method of the KMP algorithm:

For each q ≤ m, compute the value π(q) of the prefix function and store it.

Then scan T in only one iteration and shift P at any mismatch in pattern position q+1

by q - π(q). This does not omit any valid match. In class: Why is this correct?

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg5 Slide 3

 Algorithmics 5

String Matching

 i := 1; q := 0;

while i ≤ n do

{

 while (q>0)and (T[i] ≠ P[q+1])

 q := π (q);

 if T[i] = P[q+1] then q := q+1;

 if q = m

 then

 {

 print („Matching at position “, i-m);

 q := π (q);

 }

 i := i+1;

}

Implementation of main procedure:

Algorithm of Knuth-Morris-Pratt: needs O(n) time

References:

Alt, Kap. 4.8

Cormen, ch. 32 (String matching), esp. 32.4 (KMP)

q=0: no prefix of P coincides at a suffix of T ending at i

q>0 corresponds to the maximum index ≤ i s.t.

(T[i-q+1],…,T[i]) coincides with (P[1],…,P[q])

In class: Why is this algorithm correct?

Invariant:

Home work:

Why does this algorithm need O(n) time?

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg5 Slide 4

 Algorithmics 5

String Matching

i = 1:

 Then q has an initial value of 0. => Inner loop is not executed.

q = 1 if comparison with P(1) is true and 0 otherwise which is the statement of the invariant.

Assume the invariant holds for i and consider i+1:

 If T(i+1) = P(q+1) before the inner loop,

 then the maximum prefix of P until i+1 has length maximum length of P until i plus 1

 which is by assumption q + 1. So the assignment of the new q is correct.

 If T(i+1) ≠ P(q+1) before the inner loop and q = 0,

 then q remains 0 which is correct.

 If T(i+1) ≠ P(q+1) before the inner loop and q > 0,

 then (T[i-q+1],…,T[i]) coincides with (P[1],…,P[q]) by inductive assumption for i.

 If there is no q‘ < q where T(i+1) = P(q‘+1), then no prefix coincides at a suffix of T ending at i+1.

 The inner while loop will then eventually set q to 0 which is the correct invariant for i+1.

 If for some q‘ < q, T(i+1) = P(q‘+1), and this is the end of a matched prefix,

 such that T[i-q‘+1],…,T[i]) coincides with (P[1],…,P[q‘]), then by the above assumption
 (P[1],…,P[q‘]) also coincides with (P[q-q‘+1],…,P[q]) which means that q‘ ≤ π(q).

 Thus, it is ok if q is reduced accordingly in the inner while loop.
 If q‘ = π(q), it is clearly the maximum and thus the q defined in the invariant.

 Otherwise, q‘ < π(q) and will be found in a later loop iteration.

Mathematical induction using i (where i is the loop counter which is increased at the end of the loop):

Proof of the invariant:

References:

Alt, Kap. 4.8

Cormen, ch. 32 (String matching), esp. 32.4 (KMP)

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg5 Slide 5

 Algorithmics 5

String Matching

π(1) := 0;

i := 2; q := 0;

while i ≤ m do

{

 while (q>0) and (P[i]≠P[q+1]) do

 q := π(q);

 if P[i]=P[q+1] then q := q+1;

 π(i) := q;

 i := i+1;

}

Implementation of prefix function (according to Cormen/Alt):

In class:

Why does this algorithm need O(m) time?

needs O(m) time

Algorithm of Knuth-Morris-Pratt: needs O(n) time

References:

Alt, Kap. 4.8

Cormen, ch. 32 (String matching), esp. 32.4 (KMP)

Home work: Why is this algorithm correct?

q=0: no strict prefix of P coincides at a suffix of P ending at i

q>0 corresponds to the maximum index < i s.t.

(P[i-q+1],…,P[i]) coincides with (P[1],…,P[q])

Invariant:

