
FH Wedel Prof. Dr. Sebastian Iwanowski Alg42 Slide 1

Algorithmics

Sebastian Iwanowski

FH Wedel

4. Graph algorithms

4.2 Shortest paths

FH Wedel Prof. Dr. Sebastian Iwanowski Alg42 Slide 2

 Algorithmics 4

SSSP: Single Source Shortest Path

Algorithm of Dijkstra for SSSP: (for graphs G with nonnegative edge costs only)

Find the shortest paths from a source s to all other nodes

• Initialize the node set Done by s;

Initialize the node set Undone by all other nodes of graph G;

For all nodes v of the graph G:

 Let label (v) := length of edge from s to v (∞ if no edge is existing, 0 if v = s);

• While Undone is not empty:

 Search and delete the node v from Undone with minimal label;

 Insert v into Done;

 Update all neighbors n of v that are in Undone:

 If label (n) > label (v) + length of edge between v and n:

 Replace label (n) by that number;

 Let v be the predecessor of n.

Theorem: The labels of nodes v in Done are always the shortest path length from s to v

 and the shortest path is the shortest path from s to the predecessor of v

 followed by the edge from the predecessor to v.

Proof: Mathematical induction by number of iterations.

Remark: For the problem to find the shortest path between two given nodes there is no better

algorithm known than those for SSSP, and those have not been proved being optimal even for SSSP.

FH Wedel Prof. Dr. Sebastian Iwanowski Alg42 Slide 3

Theorem of correctness (to be proven):

For each node v ∈ Done holds:

 label (v) = ds(v).

where label (v) is the length of a path found from s to v

and ds(v) is the length of a shortest path from s to v

Lemma Subpath:

For each node u on the shortest path from s to v holds:

The subpath from s to u is the shortest path from s to u.

Proof by contraposition:

Let u be on any path from s to v and the subpath from s to u be not the shortest path from s to u.

Then the path from s to v is not the shortest path from s to v.

(Details: Exercise)

 Algorithmics 4

Algorithm of Dijkstra for SSSP: (for graphs G with nonnegative edge costs only)

SSSP: Single Source Shortest Path

FH Wedel Prof. Dr. Sebastian Iwanowski Alg42 Slide 4

Proof of the theorem of correctness by mathematical induction over iteration cycle i,
which shifts v to Done:

Base case for i = 0 clear (Exercise!)

Inductive step ≤ i -> i+1:

(*) Let w be the node, which is shifted to Done in the (i+1). cycle

Assume, label (w) ≠ ds(w) (will be used to contradict (*)).

Since label (w) = ∞ or label (w) = length of some path to w, the following holds: ds(w) < label (w).
Let (u,v) be the first edge on the shortest path to w leaving Done, i.e. u ∈ Done and v ∉ Done.

Then: ds(v) = ds(u) + c(u,v) = label (u) + c(u,v) ≥ label (v) => ds(v) = label (v)

This holds: label(v) = ds(v) ≤ ds(w) < label (w).
Since v,w ∉ Done, the following holds: v is shifted to Done before w => contradiction to (*)

Thus: label (w) = ds(w) q.e.d.

cf. Lemma Subpath Ind.ass.

shortest path some path

has been set to minimum of path via u (since u ∈ Done)

and previous value ass. above

 Algorithmics 4

SSSP: Single Source Shortest Path

FH Wedel Prof. Dr. Sebastian Iwanowski Alg42 Slide 5

 Algorithmics 4

SSSP: Single Source Shortest Path

References:

Skript Alt 4.4.1 (p. 79-81),

Cormen, ch. 24 (much more detailed: SSSP)

Organize the edge costs in a heap.

Find the shortest paths from a source s to all other nodes

Remark: For the problem to find the shortest path between two given nodes there is no better

algorithm known than those for SSSP, and those have not been proved being optimal even for SSSP.

Algorithm of Dijkstra for SSSP: (for graphs G with nonnegative edge costs only)

Time complexity: O((m+n)log n) (by direct inspection of the nodes)

for arbitrary graphs: O(n2log n)

for graphs with a constant number of neighbors per node: O(n log n)

Remark: Using the special structure Fibonacci Heap with corresponding methods for

decreasing keys, a very careful analysis using amortised time arguments over all loops shows

that the worst case is O(m + n log n) only. This is an improvement for dense graphs only.

FH Wedel Prof. Dr. Sebastian Iwanowski Alg42 Slide 6

 Algorithmics 4

APSP: All Pairs Shortest Path

References:

Skript Alt 4.4.2, 4.4.3 (p. 81-83),

Cormen, ch. 25.2 (Floyd-Warshall)

Trivial solution: Apply Dijkstra iteratively for all nodes as sources

Find the shortest paths between all pairs of nodes

Algorithm of Floyd-Warshall:

Let V = {1,...n}.

dij
(k) is the length of the shortest path between i and j

using in between at most nodes from {1,...k}.

Time complexity: O(n3) (with simple implementation)

for arbitrary graphs: O(n3log n) (or even O(n3)

for graphs with a constant number of neighbors per node: O(n2 log n)

Apply Dijkstra iteratively for all nodes as sources

Time complexity: O(n(m+n)log n) (or only O(n(m + n log n)

Other advantage of FW to Dijkstra:

 FW works also for negative weights

 (but no negative cycles).

FH Wedel Prof. Dr. Sebastian Iwanowski Alg42 Slide 7

 Algorithmics 4

APSP: All Pairs Shortest Path

References for a deeper insight:

Cormen, ch. 25.1 (relation to matrix multiplication)

Relation to matrix multiplication:

Let V = {1,...n}.

dij
(k) is the length of the shortest path between i und j using at most k edges.

Note: This definition is different from Floyd-Warshall‘s!

 Let A be the adjacency matrix.

Define the operation min instead of addition and the operation + instead of multiplication.

Then Ak stores in position (i,j) the length dij
(k).

In particular, An-1 stores in position (i,j) the length of the shortest path from i to j.

Theorem:

Quadratic potentiation: An-1 may be computed with O(log n) matrix multiplications.

Find the shortest paths between all pairs of nodes

Standard matrix multiplication: 2 matrices may be multiplied with O(n3) number operations.

Conclusion for APSP: O(n3log n) number operations (worse than Floyd-Warshall!)

FH Wedel Prof. Dr. Sebastian Iwanowski Alg42 Slide 8

 Algorithmics 4

APSP: All Pairs Shortest Path

References for a deeper insight:

Cormen, ch. 25.1 (relation to matrix multiplication), ch. 28.2 (Strassen’s algorithm)

Time complexity O(nlog 7 log n)

Strassens‘s algorithm

for matrix multiplication: Two nxn-matrices may be multiplied with O(nlog 7) operations.

Conclusion for APSP?

Note that log 7 ≈ 2,81

Find the shortest paths between all pairs of nodes

?

Unfortunately, no!

Strassen‘s algorithm needs inverse functions to the additive operation.

This does not hold for the minimum operation needed in the transform from APSP to

matrix multiplication.

