How to find the best move!

Search Strategies for two player games.

Seminar zu Vertiefungen und Anwendungen Von Tilman Renneke

Outline

- Motivation
- Games
- Minimax algorithm
- Search vs lookup
- Monte Carlo tree search

Motivation

- Games are decision making models
- Games can require difficult decisions
- God human knowledge in many games
- Similarities to more "useful" problems

Outline

- Motivation
- Games
 - Types
 - Examples
 - Game tree
 - Algorithmic description
- Minimax algorithm
- Search vs lookup
- Monte Carlo tree search

Games

- Two Players
- Turn based
- Zero-sum
- Perfect/Imperfect Information

Games

Games – Examples Chess

Games – Examples GO

Games – Examples

Piranhas

Games - Examples

- Checkers
- Mill
- Connect Four
- Tic-tac-toe

Games – game tree

- Nodes are game state's
- Edges are legal moves
- Comlexity: b^m
- b = number of average turns
- m = average game length
- Tic-tac-toe: 49
- Chess: 35⁷⁰
- GO: 250¹⁵⁰

Games

- GameState S₀ initial game state (Schach Bild)
- Player player(GameState s)
- Action[] actions(GameState s)
- GameState result(GameState s, Action a)
- Boolean terminalTest(GameState s)
- Float utility(GameState s, Player p)

Outline

- Motivation
- Games
- Minimax algorithm
 - Alpha beta pruning
 - Move ordering
 - Imperfect real time decisions
- Search vs lookup
- Monte Carlo Tree search

```
float maxValue (GameState s) {
    if (terminalTest(s)) {
        return utility(s);
    float v = -float.MaxValue;
    foreach (Action a in actions(s)) {
        v = Max(v, minValue(result(s, a)));
    return v:
float minValue (GameState s) {
    if (terminalTest(s)) {
        return utility(s);
    float v = float.MaxValue;
    foreach (Action a in actions(s)) {
        v = Min(v, maxValue(result(s, a)));
    return v;
```



```
float maxValue (GameState s, float alpha, float beta) {
    if (terminalTest(s))
        return utility(s);
    float v = -float.MaxValue;
   foreach(Action a in actions(s)){
        v = Max(v, minValue(result(s, a), alpha, beta));
        if (v >= beta)
           return v + 1;
        alpha = Max(alpha, v);
    return v;
float minValue (GameState s, float alpha, float beta) {
    if (terminalTest(s))
        return utility(s);
    float v = float.MaxValue;
   foreach (Action a in actions(s)) {
        v = Min(v, maxValue(result(s, a), alpha, beta));
        if (v <= alpha)</pre>
           return v - 1;
       beta = Min(beta, v);
    return v;
```


- Optimal complexity: O(b^{1/2 m})
- Depends on the turn evaluation order
- Random Order Complexity: O(b^{3/4 m})
- Sort with a specific ordering function
- Sort using an evaluation function

Outline

- Motivation
- Games
- Minimax algorithm
 - Alpha beta pruning
 - Imperfect real time decisions
 - Evaluation-function
 - Cutoff-function
- Search vs lookup
- Monte Carlo Tree search

Imperfect real time decisions

- Minimax can only solve "simple" Games
- Tree's of complex Games are to Big.
- Minimax → H-Minimax
- Termination-Test → Cutoff-Test
- Utility → Evaluation

Evaluation Functions

- Heuristic to estimate the utility of the game for a given state.
- Example chess: Adding up the values of each piece on the field.
- Has to order Terminal notes the same as Utility
- Has to be fast
- Should be strongly correlated with a chance of winning.

Evaluation function

- Idea 1: Equivalence classes
 - Calculate features of a state
 - For each state class compute the expected outcome
- Idea 2: Linear weighted functions
 - Multiply each feature value with a weight
 - Compute the Sum of all weighted features
- Idea 3: Nonlinear functions
 - Some feature can influence the weight of others

- Fixed depth cutoff
- Quiescence
 - A value for how much the heuristic can change
- Quiescence search
 - If a position isn't quiescent return false
- Horizon Effect
 - Pushing unavoidable losses over the horizon with delaying tactics.

Search vs lookup

Openings

- For many games S₀ is always the same.
- For the first moves, look them up.

Endgame

- The state complexity in some games is lower in the endgame
- Compute all possible game states of a given situation
- Compute their values using retrograde minimax search

Conclusion

- Can solve any game that is not to complex
- Complex games require some amount of game knowledge
- Chance games possible with chance nodes
- Foundation of many chess engines.
- Not as good in Games with a high branching factor and little Game knowledge like GO

Outline

- Motivation
- Games
- Minimax algorithm
- Search vs lookup
- Monte Carlo tree search
 - Origin
 - Base algorithm
 - Exploration function
 - Domain knowledge application

Monte Carlo tree search Origin

- No good evaluation function for GO
- Use random playouts to evaluate positions
- Promising results for game states that require strategic thinking
- Reaches it's optimum after a small number of playouts
- Focus on more promising nodes...

Monte Carlo tree search Base algorithm

Monte Carlo tree search

exploration formula - multi arm bandit problem

- See the game tree as an multi arm Bandit problem
- Multi arm Bandit Problem
 - which slot machine should we choose
 - Solution:
 - Play each machine once.
 - Play the arm that maximizes: $X_i + \sqrt{\frac{2 \log(n)}{n_i}}$

Monte Carlo tree search

Domain knowledge application

- Heavy playouts
 - Weight the chance of every move based on Game knowledge
- Node initialization
 - Initialize each expanded node with an evaluation function

MCTS - Conclusion

- No game knowledge needed.
- Support for chance games.
- Can be enhanced with game knowledge
- Quite good at Go

Sources

- Tomáš Kozelek (2009). Methods of MCTS and the game Arimaa (PDF).
 Master's thesis, Charles University in Prague.
- Stuart J. Russell and Peter Norvig (2016). Artificial Intelligence A Modern Approach Third Edition. Pearson
- Web Links:
 - https://en.wikipedia.org/wiki/Game complexity
- Images:
 - https://www.flickr.com/photos/160866001@N07/30606387067/in/photolis t-NCzJyK-2cjqMzw-6MW8AR-6M8gPj-8t1Cgq-bLed9T-bweHFg-DBPVdT-7K7Lkj-bxjB7Y-qx4xVd-bwfg7P-bwfgwa-bxjBc9-bLefDi-bLei24bxjANd-bxjBy7-cB6RGS-bLegop-bLeguD-bLeehZ-bLeiFB-bxjx8NbxjAxC-5ep9Qv-bLed5R-dYczef-bxjADG-bweXGa-bxjAcj-bxjC37bLedR2-bLefMe-bxjxnA-bLegWM-bLedyr-bxjBGo-bxjxYJ-bxjBqb-bxjzzNbxjzwN-bxjyd7-bLegd6-bxjy6y-bLedqV-9vU5J9-bLeeBt-bLeddc-bLeiXg

Sources

- https://pixabay.com/photos/checkmate-chess-resignation-1511866/
- https://publicdomainpictures.net/en/view-image.php?image=163474&picture=