
  1

How to find the best move!

Search Strategies for two player games.

Seminar zu Vertiefungen und Anwendungen
Von Tilman Renneke



  2

Outline

● Motivation
● Games
● Minimax algorithm
● Search vs lookup
● Monte Carlo tree search



  3

Motivation

● Games are decision making models
● Games can require difficult decisions
● God human knowledge in many games
● Similarities to more “useful” problems



  4

Outline

● Motivation
● Games

– Types

– Examples

– Game tree

– Algorithmic description

● Minimax algorithm
● Search vs lookup
● Monte Carlo tree search



  5

Games

● Two Players
● Turn based
● Zero-sum
● Perfect/Imperfect Information



  6

Games



  7

Games – Examples
Chess



  8

Games – Examples
GO



  9

Games – Examples
Piranhas



  10

Games - Examples

● Checkers
● Mill
● Connect Four
● Tic-tac-toe



  11

Games – game tree

● Nodes are game state's
● Edges are legal moves
● Comlexity: bm

● b = number of average turns
● m = average game length
● Tic-tac-toe: 49

● Chess: 3570

● GO: 250150



  12

Games

● GameState S
0
 initial game state (Schach Bild)

● Player player(GameState s)
● Action[] actions(GameState s)
● GameState result(GameState s, Action a)
● Boolean terminalTest(GameState s)
● Float utility(GameState s, Player p)



  13

Outline
● Motivation
● Games
● Minimax algorithm

– Alpha beta pruning
● Move ordering

– Imperfect real time decisions

● Search vs lookup
● Monte Carlo Tree search



  14

Minimax Algorithm
float maxValue (GameState s) {
    if (terminalTest(s)) {
        return utility(s);
    }
    float v = -float.MaxValue;
    foreach (Action a in actions(s)) {
        v = Max(v, minValue(result(s, a)));
    }
    return v;
}
float minValue (GameState s) {
    if (terminalTest(s)) {
        return utility(s);
    }
    float v = float.MaxValue;
    foreach (Action a in actions(s)) {
        v = Min(v, maxValue(result(s, a)));
    }
    return v;
}



  15

Minimax Algorithm

Utility:

Max: 1 
Min :-1

Max: 0 
Min : 0

Max:-1 
Min : 1



  16

Minimax Algorithm

0 -11011 0 -1 -1

0 -1 -1

0



  17

Minimax Algorithm

0 -11011 0 -1 -1

0 -1 -1

0



  18

Minimax Algorithm
Alpha Beta Pruning

float maxValue (GameState s, float alpha, float beta) {
    if (terminalTest(s))
        return utility(s);
    float v = -float.MaxValue;
    foreach(Action a in actions(s)){
        v = Max(v, minValue(result(s, a), alpha, beta));
        if (v >= beta) 
            return v + 1;
        alpha = Max(alpha, v);
    }
    return v;
}
float minValue (GameState s, float alpha, float beta) {
    if (terminalTest(s))
        return utility(s);
    float v = float.MaxValue;
    foreach (Action a in actions(s)) {
        v = Min(v, maxValue(result(s, a), alpha, beta));
        if (v <= alpha)
            return v - 1;
        beta = Min(beta, v);
    }
    return v;
}



  19

Minimax Algorithm
Alpha Beta Pruning

1

0

0
α: -∞ 
β:  ∞

α: -∞ 
β:  ∞

α: -∞ 
β:  ∞

α: -∞ 
β:  1



  20

Minimax Algorithm
Alpha Beta Pruning

1

0

0
α: 0 
β: ∞

α: -∞ 
β:  ∞

α: -∞ 
β:  ∞

α: 0 
β: 0



  21

Minimax Algorithm
Alpha Beta Pruning

1

0

0
α: 0 
β: ∞

α: -∞ 
β:  ∞

α: 0 
β: 1

α: 0 
β: 0



  22

Minimax Algorithm
Alpha Beta Pruning

1

0

0
α: 0 
β: ∞

α: -∞ 
β:  ∞

α: 0 
β: 1

α: 0 
β: 0



  23

Minimax Algorithm
Alpha Beta Pruning

1

0

0
α: 0 
β: 0

α: 0 
β: 0

α: 0 
β: 0

α: 0 
β: 0



  24

Minimax Algorithm
Alpha Beta Pruning

● Optimal complexity: O(b1/2 m)
● Depends on the turn evaluation order
● Random Order Complexity: O(b3/4 m)
● Sort with a specific ordering function 
● Sort using an evaluation function



  25

Outline
● Motivation
● Games
● Minimax algorithm

– Alpha beta pruning

– Imperfect real time decisions
● Evaluation-function
● Cutoff-function

● Search vs lookup
● Monte Carlo Tree search



  26

Imperfect real time decisions

● Minimax can only solve “simple” Games
● Tree's of complex Games are to Big.
● Minimax → H-Minimax
● Termination-Test → Cutoff-Test
● Utility → Evaluation



  27

Evaluation Functions

● Heuristic to estimate the utility of the game for a 
given state.

● Example chess: Adding up the values of each 
piece on the field.

● Has to order Terminal notes the same as Utility
● Has to be fast
● Should be strongly correlated with a chance of 

winning.



  28

Evaluation function

● Idea 1: Equivalence classes
– Calculate features of a state

– For each state class compute the expected 
outcome

● Idea 2: Linear weighted functions
– Multiply each feature value with a weight

– Compute the Sum of all weighted features

● Idea 3: Nonlinear functions
– Some feature can influence the weight of others



  29

Cutoff-function

● Fixed depth cutoff
● Quiescence

– A value for how much the heuristic can change

● Quiescence search 
– If a position isn't quiescent return false

● Horizon Effect
– Pushing unavoidable losses over the horizon with 

delaying tactics.



  30

Cutoff-function



  31

Cutoff-function



  32

Cutoff-function



  33

Cutoff-function



  34

Search vs lookup

● Openings

– For many games S
0 
is always the same.

– For the first moves, look them up.

● Endgame
– The state complexity in some games is lower in the 

endgame

– Compute all possible game states of a given 
situation

– Compute their values using retrograde minimax 
search



  35

Conclusion

● Can solve any game that is not to complex
● Complex games require some amount of game 

knowledge
● Chance games possible with chance nodes
● Foundation of many chess engines.
● Not as good in Games with a high branching 

factor and little Game knowledge like GO



  36

Outline
● Motivation
● Games
● Minimax algorithm
● Search vs lookup
● Monte Carlo tree search

– Origin

– Base algorithm

– Exploration function

– Domain knowledge application



  37

Monte Carlo tree search
Origin

● No good evaluation function for GO
● Use random playouts to evaluate positions
● Promising results for game states that require 

strategic thinking
● Reaches it's optimum after a small number of 

playouts
● Focus on more promising nodes...



  38

Monte Carlo tree search
Base algorithm



  39

Monte Carlo tree search
exploration formula - multi arm bandit problem

● See the game tree as an multi arm Bandit 
problem

● Multi arm Bandit Problem
– which slot machine should we choose

– Solution: 
● Play each machine once.
● Play the arm that maximizes: X i+√ 2 log(n)

ni



  40

Monte Carlo tree search
Domain knowledge application

● Heavy playouts
– Weight the chance of every move based on Game 

knowledge

● Node initialization
– Initialize each expanded node with an evaluation 

function



  41

MCTS - Conclusion

● No game knowledge needed.
● Support for chance games.
● Can be enhanced with game knowledge
● Quite good at Go



  42

Sources

● Tomáš Kozelek (2009). Methods of MCTS and the game Arimaa (PDF). 
Master's thesis, Charles University in Prague.

● Stuart J. Russell and Peter Norvig (2016). Artificial Intelligence A Modern 
Approach Third Edition. Pearson

● Web Links:

– https://en.wikipedia.org/wiki/Game_complexity

● Images:

– https://www.flickr.com/photos/160866001@N07/30606387067/in/photolis
t-NCzJyK-2cjqMzw-6MW8AR-6M8gPj-8t1Cgq-bLed9T-bweHFg-
DBPVdT-7K7Lkj-bxjB7Y-qx4xVd-bwfg7P-bwfgwa-bxjBc9-bLefDi-bLei24-
bxjANd-bxjBy7-cB6RGS-bLegop-bLeguD-bLeehZ-bLeiFB-bxjx8N-
bxjAxC-5ep9Qv-bLed5R-dYczef-bxjADG-bweXGa-bxjAcj-bxjC37-
bLedR2-bLefMe-bxjxnA-bLegWM-bLedyr-bxjBGo-bxjxYJ-bxjBqb-bxjzzN-
bxjzwN-bxjyd7-bLegd6-bxjy6y-bLedqV-9vU5J9-bLeeBt-bLeddc-bLeiXg

https://en.wikipedia.org/wiki/Game_complexity


  43

Sources

– https://pixabay.com/photos/checkmate-chess-resignation-1511866/

– https://publicdomainpictures.net/en/view-image.php?image=163474&picture=finished-go-game

https://publicdomainpictures.net/en/view-image.php?image=163474&picture=finished-go-game

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43

