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How to find the best move!

Search Strategies for two player games.

Seminar zu Vertiefungen und Anwendungen
Von Tilman Renneke
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Motivation

● Games are decision making models
● Games can require difficult decisions
● God human knowledge in many games
● Similarities to more “useful” problems
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Games

● Two Players
● Turn based
● Zero-sum
● Perfect/Imperfect Information
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Games
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Games – Examples
Chess
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Games – Examples
GO
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Games – Examples
Piranhas
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Games - Examples

● Checkers
● Mill
● Connect Four
● Tic-tac-toe
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Games – game tree

● Nodes are game state's
● Edges are legal moves
● Comlexity: bm

● b = number of average turns
● m = average game length
● Tic-tac-toe: 49

● Chess: 3570

● GO: 250150
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Games

● GameState S
0
 initial game state (Schach Bild)

● Player player(GameState s)
● Action[] actions(GameState s)
● GameState result(GameState s, Action a)
● Boolean terminalTest(GameState s)
● Float utility(GameState s, Player p)



  13

Outline
● Motivation
● Games
● Minimax algorithm

– Alpha beta pruning
● Move ordering

– Imperfect real time decisions
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Minimax Algorithm
float maxValue (GameState s) {
    if (terminalTest(s)) {
        return utility(s);
    }
    float v = -float.MaxValue;
    foreach (Action a in actions(s)) {
        v = Max(v, minValue(result(s, a)));
    }
    return v;
}
float minValue (GameState s) {
    if (terminalTest(s)) {
        return utility(s);
    }
    float v = float.MaxValue;
    foreach (Action a in actions(s)) {
        v = Min(v, maxValue(result(s, a)));
    }
    return v;
}
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Minimax Algorithm

Utility:

Max: 1 
Min :-1

Max: 0 
Min : 0

Max:-1 
Min : 1
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Minimax Algorithm

0 -11011 0 -1 -1

0 -1 -1

0
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Minimax Algorithm

0 -11011 0 -1 -1

0 -1 -1

0
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Minimax Algorithm
Alpha Beta Pruning

float maxValue (GameState s, float alpha, float beta) {
    if (terminalTest(s))
        return utility(s);
    float v = -float.MaxValue;
    foreach(Action a in actions(s)){
        v = Max(v, minValue(result(s, a), alpha, beta));
        if (v >= beta) 
            return v + 1;
        alpha = Max(alpha, v);
    }
    return v;
}
float minValue (GameState s, float alpha, float beta) {
    if (terminalTest(s))
        return utility(s);
    float v = float.MaxValue;
    foreach (Action a in actions(s)) {
        v = Min(v, maxValue(result(s, a), alpha, beta));
        if (v <= alpha)
            return v - 1;
        beta = Min(beta, v);
    }
    return v;
}
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Minimax Algorithm
Alpha Beta Pruning
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Minimax Algorithm
Alpha Beta Pruning
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Minimax Algorithm
Alpha Beta Pruning
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Minimax Algorithm
Alpha Beta Pruning
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Minimax Algorithm
Alpha Beta Pruning
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Minimax Algorithm
Alpha Beta Pruning

● Optimal complexity: O(b1/2 m)
● Depends on the turn evaluation order
● Random Order Complexity: O(b3/4 m)
● Sort with a specific ordering function 
● Sort using an evaluation function
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Imperfect real time decisions

● Minimax can only solve “simple” Games
● Tree's of complex Games are to Big.
● Minimax → H-Minimax
● Termination-Test → Cutoff-Test
● Utility → Evaluation
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Evaluation Functions

● Heuristic to estimate the utility of the game for a 
given state.

● Example chess: Adding up the values of each 
piece on the field.

● Has to order Terminal notes the same as Utility
● Has to be fast
● Should be strongly correlated with a chance of 

winning.
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Evaluation function

● Idea 1: Equivalence classes
– Calculate features of a state

– For each state class compute the expected 
outcome

● Idea 2: Linear weighted functions
– Multiply each feature value with a weight

– Compute the Sum of all weighted features

● Idea 3: Nonlinear functions
– Some feature can influence the weight of others
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Cutoff-function

● Fixed depth cutoff
● Quiescence

– A value for how much the heuristic can change

● Quiescence search 
– If a position isn't quiescent return false

● Horizon Effect
– Pushing unavoidable losses over the horizon with 

delaying tactics.
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Cutoff-function
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Cutoff-function
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Cutoff-function
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Cutoff-function
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Search vs lookup

● Openings

– For many games S
0 
is always the same.

– For the first moves, look them up.

● Endgame
– The state complexity in some games is lower in the 

endgame

– Compute all possible game states of a given 
situation

– Compute their values using retrograde minimax 
search
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Conclusion

● Can solve any game that is not to complex
● Complex games require some amount of game 

knowledge
● Chance games possible with chance nodes
● Foundation of many chess engines.
● Not as good in Games with a high branching 

factor and little Game knowledge like GO
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Outline
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● Games
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● Monte Carlo tree search

– Origin

– Base algorithm

– Exploration function

– Domain knowledge application
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Monte Carlo tree search
Origin

● No good evaluation function for GO
● Use random playouts to evaluate positions
● Promising results for game states that require 

strategic thinking
● Reaches it's optimum after a small number of 

playouts
● Focus on more promising nodes...
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Monte Carlo tree search
Base algorithm
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Monte Carlo tree search
exploration formula - multi arm bandit problem

● See the game tree as an multi arm Bandit 
problem

● Multi arm Bandit Problem
– which slot machine should we choose

– Solution: 
● Play each machine once.
● Play the arm that maximizes: X i+√ 2 log(n)

ni
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Monte Carlo tree search
Domain knowledge application

● Heavy playouts
– Weight the chance of every move based on Game 

knowledge

● Node initialization
– Initialize each expanded node with an evaluation 

function
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MCTS - Conclusion

● No game knowledge needed.
● Support for chance games.
● Can be enhanced with game knowledge
● Quite good at Go
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Sources

● Tomáš Kozelek (2009). Methods of MCTS and the game Arimaa (PDF). 
Master's thesis, Charles University in Prague.

● Stuart J. Russell and Peter Norvig (2016). Artificial Intelligence A Modern 
Approach Third Edition. Pearson

● Web Links:

– https://en.wikipedia.org/wiki/Game_complexity

● Images:

– https://www.flickr.com/photos/160866001@N07/30606387067/in/photolis
t-NCzJyK-2cjqMzw-6MW8AR-6M8gPj-8t1Cgq-bLed9T-bweHFg-
DBPVdT-7K7Lkj-bxjB7Y-qx4xVd-bwfg7P-bwfgwa-bxjBc9-bLefDi-bLei24-
bxjANd-bxjBy7-cB6RGS-bLegop-bLeguD-bLeehZ-bLeiFB-bxjx8N-
bxjAxC-5ep9Qv-bLed5R-dYczef-bxjADG-bweXGa-bxjAcj-bxjC37-
bLedR2-bLefMe-bxjxnA-bLegWM-bLedyr-bxjBGo-bxjxYJ-bxjBqb-bxjzzN-
bxjzwN-bxjyd7-bLegd6-bxjy6y-bLedqV-9vU5J9-bLeeBt-bLeddc-bLeiXg

https://en.wikipedia.org/wiki/Game_complexity
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