Algorithmics

Sebastian lwanowski
FH Wedel

3. Solutions for the dictionary problem
3.1 Hashing and other methods for optimizing the avarage case behaviour

Algorithmics 3

Implementation of dictionaries

A dictionary is a data structure for elements comparable by a key implementing the functions
member (key), insert (key, newdata) and delete (key)

Using a sorted array for a dictionary:

member (key) run time ©(log n) w.c. and O(log log n) a.c. achievable ©

not by the same algorithm

insert (key, newdata) run time ©(n) w.c. and a.c. @

delete (key) run time ©(n) w.c. and a.c. @

Better method for insert / delete with indexed arrays: Hashing (cf. following slides)

References:

Skript Alt, S. 30 — 35 (for member) in German
more information: cf. previous chapter

Which problem does hashing solve?

data record: data base;:

key for searching—*| Max Mustermann = .
identifies Musterstr. 1 — (T, >
12345 Musterdorf ;

data record
uniquely]
Tel.: 010 123 45 67
key value ."~... =
A — —

data administration operations: map operations

e search get (key)

. insert put (key, value) Hashing is a method implementing

these operations efficiently.
e delete remove (key)

Outline of method

data record: hash table T:
search key s — | Max Mustermann
Musterstr. 1 0 [i+1

12345 Musterdorf

° >
[]

Tel.: 010 123 45 67

function hash: key - integer

,.Max Mustermann® - |

v

hash number hash(s) hash(,Max Mustermann®) =i

Data record searched is in TJi].

\ 4

» search Determine i=hash(s)

v

* insert Determine i=hash(s) Store new data record in T[i].

v

 delete Determine i=hash(s) Delete datarecord from T[i]. (T[i] = null)

Discussing detalls

data record: hash table T:

Max Mustermann
Musterstr. 1 0 -1 i+1 m

12345 Musterdorf

oomse |
1) How to define a good 2) Where to store the data
hash function? record in the hash table?

FH Wedel Prof. Dr. Sebastian lwanowski .Alg31 slide 5

1) How to define a good hash function ?

Case 1: Hash table contains at least as many records as different keys are possible.

Goal: Each key is mapped to a different hash number.

perfect hashing

Solution: Sort the keys by order (e.g. lexikographically) !

Map each key to its order number!

Example: ,Max Mustermann“-> (13124 013211920518131 14 14)
(for strings
as keys) hash (,Max Mustermann®) = 13*2713 + 1*2712 + 24*2711 + 0*2710 + 13*27° + 21*278 + 19*277

+ 20%276 + 5*275 + 18*274 + 13*273 + 1*272 + 14*271 + 14*27°
= 52966834350000000000 (20-digit number)

In general a lot of different keys are possible!

Conclusion: Case 1is not realistic !

FH Wedel Prof. Dr. Sebastian lwanowski .Alg31 slide 6

1) How to define a good hash function ?

Case 2: Hash table contains fewer records than different keys that are possible.
m Kk

Case 2: m<k

Conclusion: Different keys have to be mapped to the same hash number

collision

Goal:

Each hash number 0 thru m-1 is the function value of aproximately equally many keys
(i.e. approximately k/m).

Solution: Sort the keys by order (e.g. lexikographically) !

Map each key to its order number modulo m !

FH Wedel Prof. Dr. Sebastian lwanowski .Alg31 slide 7

1) How to define a good hash function ?

Exam p|e: m = 1000 LAntje“ > (114 20 10 5)

(for strings

as keys) hash (,Antje“) = (1 * 274 + 14 * 273 + 20 * 272 + 10 * 27* + 5) mod 1000
= 821858 mod 1000
= 858

Algorithm for a good hash function (according to Horner‘s method) :

hash(,Antje“) = ((((1 * 27 + 14) * 27 + 20) * 27 + 10) * 27 + 5) mod 1000
= (((((((2 mod 1000 * 27 + 14) mod 1000) * 27 + 20) mod 1000) * 27 + 10) mod 1000) * 27 + 5) mod 1000

static int hash (String key, int m)
{

int result 0, numberSymbols = 27;

Java code: , _ _ ,
for (int 1 = 0; 1 < key.length(); i++)
result = (result*numberSymbols + order (key.charAt(i))) % m;

return result;

FH Wedel Prof. Dr. Sebastian lwanowski .Alg31 slide 8

2) Where to store the data record in the hash table?

Problem: How to handle collisions?

Example: hash (,Max Mustermann) = 858

Hash table T:

hash (,Antje®) = 858
Max Mustermann Antje
0 857 858 859 m

Does anybody have a better idea?

FH Wedel Prof. Dr. Sebastian lwanowski .Alg31 slide 9

2) Where to store the data record in the hash table?

Problem: How to handle collisions?

Solution: TIi] contains pointers to linked lists of those data records
whose keys have the same hash number 1.

0 857 858 859
Y 1
Max Mustermaon { e
. =

FH Wedel Prof. Dr. Sebastian lwanowski .Alg31 slide 10

2) Where to store the data record in the hash table?

Problem: How to handle collisions?

Solution: TIi] contains pointers to linked lists of those data records
whose keys have the same hash number i.

0 857 858 859
B iy
5 =
Search: Antje ? = Antje *
no show !
1) Determine hash (,,Antje*) = 858 Antje ? NE=
found !

2) Traverse list of T[858]

FH Wedel Prof. Dr. Sebastian lwanowski .Alg31 slide 11

2) Where to store the data record in the hash table?

Problem: How to handle collisions?

Solution: TIi] contains pointers to linked lists of those data records
whose keys have the same hash number i.

0 857 858 859

T | | |

' b

Insert: Fridolin Krapulapinski Fridolin 2 =
no show !

\ 4

Fridolin ? -
no show !

"
e
"y
LY)

\ 4

“a,
L
.......
e,
e

End of list fountH

2) Traverse list of T[858].

3) Insert at end of list.

FH Wedel Prof. Dr. Sebastian lwanowski .Alg31 slide 12

2) Where to store the data record in the hash table?

Problem: How to handle collisions?

Solution: TIi] contains pointers to linked lists of those data records
whose keys have the same hash number i.

0 857 858 859 m
B SR e s

Antje ? =_w==_

: B J :
Delete: Antje : no show ! =
_ establish new link
removRifia’recora
1) Determine hash (,,Antje“)=858 found !

2) Traverse list of T[858].

3) Remove the respective data record.

FH Wedel Prof. Dr. Sebastian lwanowski .Alg31 slide 13

2) Where to store the data record in the hash table?

Problem: How to handle collisions?

Solution: TIi] contains pointers to linked lists of those data records
whose keys have the same hash number i. (closed hashing)

0 857 858 859 m

Evaluating the
presented method: l 1 v l l

. easy to implement

. implements hashing for arbitrary k and m
(k: number of keys, m: number of places)

objection:

. waste of storage space !

FH Wedel Prof. Dr. Sebastian lwanowski .Alg31 slide 14

2) Where to store the data record in the hash table?

Problem: How to handle collisions?

_ . Search for other free space in hash table:
Alternative solution: prgceed from TJi] according to a certain rule

(open hashing) until free space is found
probing rule

Example for probing rule: move right by one

ot
NG
ONGN 2 »
..':.::::::::"..
..':.'::'::"::"'-
L TSR N T 1Y
L L] a L L]
2 I ') Ny Ny
] L] L] Ll Ly]
[] L] L] L]
IS - Ny Yay, "va,
L] L] L] L]]
] L L]] [
",
Y. T, T, vy, U,
LN o, Y, "y, ey,
] “y Ya, gy L
] - . gy L]
L] a,y L] L] "
L] N gy ny
Y “y "uy
4y '....
"a
“a,

0 857 858 859 860 861 862 m

FH Wedel Prof. Dr. Sebastian lwanowski .Alg31 slide 15

2) Where to store the data record in the hash table?

Problem: How to handle collisions?

_ . Search for other free space in hash table:
Alternative solution: prgceed from TJi] according to a certain rule

(open hashing) until free space is found
probing rule

Other methods for probing rules:

1. move by quadratically increasing distances
2. move according to a second hash function (double hashing)

3. lots more of rules in literature and practice

FH Wedel Prof. Dr. Sebastian lwanowski .Alg31 slide 16

Compare with other techniques

Hash tables

What is better?

\ 4

Search trees

»Fridolin Krapulapinski*

FH Wedel Prof. Dr. Sebastian lwanowski .Alg31 slide 17

Compare with other techniques m = 1000
n= 500
Search trees Hash tables N ;ggg
(containing n entries) (containing n entries e
and m hash places) n =1 000 000
= 500 ~ 1500 : ¢
Storage o(n) ~ 1000 O(m+n) = 2000 Improvemen
~ 2000 ~ 3000 by open hashing
avarage run time -9
of one operation
(search / insert / delete) O(Iog n) =10
~11
= 20 ~ 1000

Applicability

for arbitrarily many datg

only for constant

number of data (n = m)

improvement by

dynamic hashing

Recommendation
of use

for frequent
insert and delete

for frequent
search

FH Wedel Prof. Dr. Sebastian lwanowski .Alg31 slide 18

Algorithmics 3

Implementation of dictionaries

A dictionary is a data structure for elements comparable by a key implementing the functions
member (key), insert (key, newdata) and delete (key)

Summarizing hashing

data type: Indexed array with m positions

Principle 9f . There is a hash function h: Keys — {0,...,m-1}
operation: . Each element is stored at h(k),

as long as this position is still free (where k is the element’s key)

. If position h(K) is occupied,

a collision handling must be performed (different strategies available)

All 3 dictionary functions: run time ©(n) w.c. and ©(n/m) a.c.
= for n € O(m): run time ©(1) a.c.

References:

Cormen, ch. 11

Algorithmics 3

Implementation of dictionaries

A dictionary is a data structure for elements comparable by a key implementing the functions
member (key), insert (key, newdata) and delete (key)

Summarizing hashing: Strategies for collision handling
data type: Indexed array with m positions

Hash lists

. At position h(k), there is a pointer to a linked lists instead of the data record .
. All data to be mapped to h(k) will be inserted sequentially into the linked list.

Open hashing

. If position h(Kk) is occupied,
a special probing rule determine a different position.

. There are different strategies for probing rules.

. If all positions are occupied, the array must be enhanced
and the hash function must be adapted (rehashing)

References:

Cormen, ch. 11

Algorithmics 3

Implementation of dictionaries

A dictionary is a data structure for elements comparable by a key implementing the functions
member (key), insert (key, newdata) and delete (key)

Summarizing search trees:

data type: pair (data, list of children trees) <— nodes
Principle of . Each operation inspects the data of the node where it is invoked.
operation: If the operation may not be executed directly at node,
it will be passed to one of the children. Each operation
The choice to which child will be decided locally in the node. must be performed in
« The search tree bares invariants that must be maintained constant time per node.
(e.g. property that each node has got exactly 2 children)
. The maintenance of the invariants may require additional
operations for insert and delete.
All 3 dictionary functions run time ©(h) <— h s height of search tree
h is between Q(log n) and O(n) w.c., ©(log n) a.c.
References:

different ways of considering a.c.

Cormen, ch. 12, Skript Alt, S. 40-41 (in German)

