# Small Worlds and Their Modelling 

A TERM PAPER BY CARINA KIRSCHNER
WS 2018/19

## Table of Contents

1. Introduction
2. Six Degrees of Separation
2.1. Stanley Milgram's Chain Letter Experiment
2.2 Other Degrees of Separation
2.3 Why is the Degree of Separation very low?
3. Ways of Modelling Small Worlds
3.1 Random Networks
3.2 Small World Networks
3.3 Scale Free Networks
4. Outlook

## Introduction


https://www.shutterstock.com/search/society


## Six Degrees of Separation

## Degree of Separation

The least amount of links between two nodes

## Example:


$E$ and $C$ have two Degrees of Separation

# Stanley Milgram's Chain Letter Experiment 

"How many acquaintances do you need to connect any two persons in the United States with each other? "

Stanley Milgram

## Stanley Milgram's Chain Letter Experiment



## Stanley Milgram's Chain Letter Experiment

## How to take part in this Study

1. Add your name to the roster at the bottom of this sheet.
2. Detach one postcard. Fill it out and return it to Harvard University.
3. If you know the target person on a personal basis, mail this folder directly to her (him).
4. If you don't know the target person on a personal basis, do not try to contact him directly. Instead, mail this folder (postcards and all) to a personal acquaintance who is more likely than you to know the target person.

# Stanley Milgram's Chain Letter Experiment 

Median of intermediate persons
5.5

## Other Degrees of Separation

Degree of Separation between pages in the WWW is 19
Degree of Separation on molecules in the cell is 3
Degree of Separation between routers in the internet is 10

## Why is the Degree of Separation very low?

- Each node has on average $k$ links
- With one Step we can reach $k$ other nodes
- $k^{2}$ nodes are two links away -> $k^{d}$ nodes are d links away

Formula to calculate the average Separation with $k^{d}=N$

$$
d=\frac{\log N}{\log k}
$$

## Ways of Modelling

- Random Networks
- Small World Networks
- Scale Free Networks

Random Networks

## Random Networks

## $G(n, p)$

1. Nodeset(v1,...,vn) owns n nodes.
2. The Node vi and $v j$ with $i<j$ are linked with the probability $p$. This happens separately for different pairs of nodes.

## Random Networks

If $p$ is set and $n$ grows towards infinity:

- The nodes vi and vj are linked with the probability p.
- The probability that there is a way of the length 2 between two nodes depends on $n$.
- There are n-2 ways of the length 2.
- The probability that the nodes are in the random network is $p^{2}$.
- The probability that none of the $\mathrm{n}-2$ ways are in the random network is

$$
\left(1-p^{2}\right)^{n-2}
$$

- For $n \rightarrow \infty$ the probability goes towards 0 .
- For $n \rightarrow \infty$ the probability that a pair of nodes is linked through a way of 2 goes towards 1 .


## Random Networks

$$
p=\frac{c}{n} \text { where } c>0
$$

The average amount of links at one node would be:
$(n-1) p=\frac{(n-1) c}{n}$
For $n \rightarrow \infty$ the term $\frac{(n-1)}{n}$ goes towards 1 .
For big n the amount of links will be c .

## Random Networks

$\mathrm{G}\left(n, \frac{c}{n}\right)$ with $c=1000$ and $n=7000000000$
Every pair of nodes knows each other with the probability $\frac{c}{n}=\frac{1}{7000000}$ Under 1000 acquaintances are $\frac{1000 \cdot 999}{2} \approx 500000$ possibilities to choose 2 persons
Each of those 500000 pairs has the probability $\frac{1}{7000000}$ to know each other.
The expected amount of acquaintances who know each other is $\frac{500000}{7000000} \approx$ 0.071

## Small World Networks

## Small World Networks

## "How big is the chance that my two

 best friends know each other? "Duncan Watts

## Small World Networks



## Small World Networks

The clustering coefficient C for a Node is given by the amount of links between the nodes within its neighborhood divided by the number of links that could possibly exist between them.

## Small World Networks The Erdös Number

- Paul Erdös (*26 ${ }^{\text {th }}$ March 1913, Budapest $-+20^{\text {th }}$ September, Warschau)
- Very famous and eccentric mathematician of the $20^{\text {th }}$ Century
- He published over $\mathbf{1 5 0 0}$ papers with $\mathbf{5 0 7}$ coauthors.



## Small World Networks The Erdös Number

| Erdös Number | Number of Maithematicians |
| :---: | ---: |
| 0 | 1 |
| 1 | 502 |
| 2 | 5713 |
|  | 26422 |
| 4 | 62163 |
| 5 | 66157 |
| 6 | 32280 |
| 7 | 10431 |
| 8 | 3214 |
| 9 | 953 |
| 10 | 262 |
| 11 | 94 |
| 12 | 23 |
| 13 | 4 |
| 14 | 7 |
| 15 | 1 |
| 16 | 0 |

## Small World Networks

Regular


Small World


## Scale Free Networks

## Scale Free Networks

"Sprinkled among every walk of live... are a handful of people with a truly extra ordinary knack of making friends and acquaintances. They are connectors"

Malcom Gladwell

## Scale Free Networks



Hubs \&

## Connectors

https://tekeye.uk/computing/how-many-websites-are-there

## Random Networks <br> Scale Free Networks



Bell Curve Distribution of Node Linkages


Nunber of Links


Power Law Distribution of Node Linkages


[^0]

## Scale Free Networks

Degree Distribution can be described as

$$
P_{d e g}(k) \propto k^{-\gamma}
$$

Degree Distribution is the probability that a randomly


## Scale Free Network

## Growth

Each network starts with one node and than grows by adding new ones.

## Preferential Attachment

The new nodes prefer to link to the nodes with more links.

## Scale Free Networks



Scale-Free Networks by Albert-Laszlo Barabasi \& Eric Bonabeau, Scientific American, 2003

## Scale Free Networks

| Examples of Scale-Free Networks |  |  |
| :--- | :--- | :--- |
| NETWORK | NODES | LINKS |
| Cellular metabolism | Molecules involved in <br> burning food for energy | Participation in the same <br> biochemical reaction |
| Hollywood | Actors | Appearance in the same movie |
| Internet | Routers | Optical and other <br> physical connections |
| Protein regulatory <br> network | Proteins that help to <br> regulate a cell's activities | Interactions among <br> proteins |
| Research collaborations | Scientists | Co-authorship of papers |
| Sexual relationships | People | Sexual contact |
| World Wide Web | Web pages | URLs |

Outlook

https://cheezburger.com/7940987904


[^0]:    - A few nodes with many links

