

winter semester 2018/2019 Maurice Behm / winf102354



- 1 Introduction
- 2 Footsteps
  - 2.1 Basics and Rules
  - 2.2 Game example
  - 2.3 Strategies
    - •2.3.1 Deterministic Strategy
    - •2.3.2 Probabilistic Strategy
    - •2.3.3 Deterministic result
    - •2.3.4 Probabilistic result
- 3 Conclusion

#### 1 Introduction

- Game theory developed over time
  - Was also applied in evolutionary biology
- Footsteps is also known as "Quo Vadis"
- One of many examples for strategy and decision-making
- Not as simple as it seems
  - Strategies can be a key role in a game of Footsteps

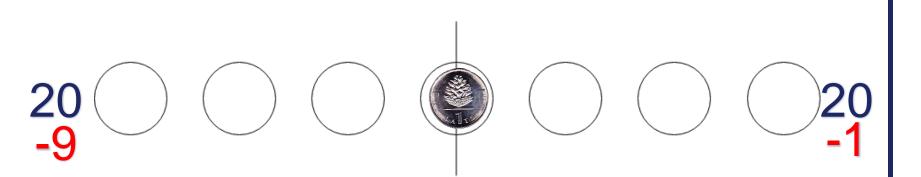
# 2 Footsteps2.1 Basics and Rules

- Simple psychological game
- Requires:
  - Two players
  - Pencil
  - Paper
  - A token or coin
- 7 circles and the middle one separated by a line

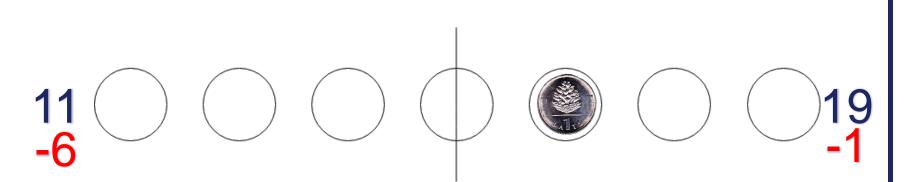




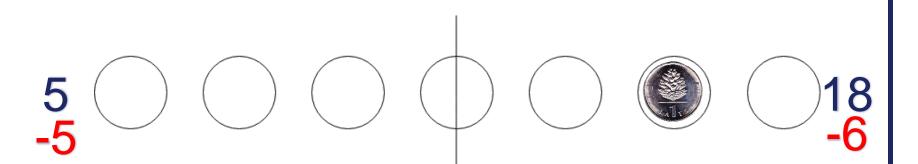




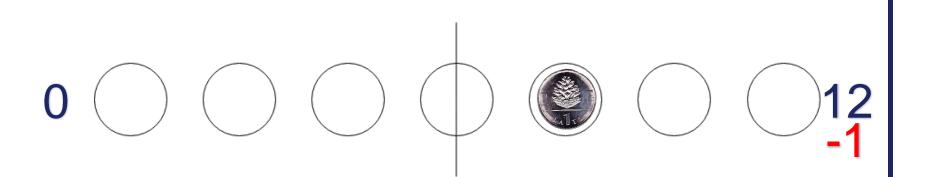

- each player starts with 50 points
- write down a number between 1 and their remaining points
- Larger number wins
  - $\rightarrow$ Player can move token
- Objective is to reach the last circle of your opponents territory
- you can easily change the difficulty by adjusting the board size or amount of points




- Wining every turn with only one point would be ideal
  - Leads to a significant advantage
- Sometimes reasonable to face a certain loss
- Know how many points your opponent has to play accordingly
  - e.g. one player has 5 points left and the other none



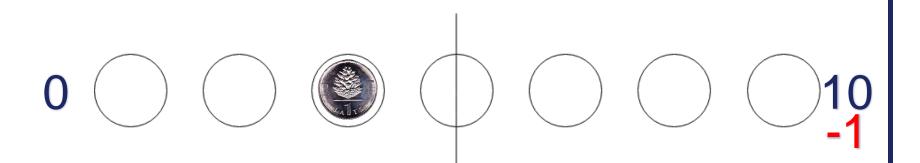














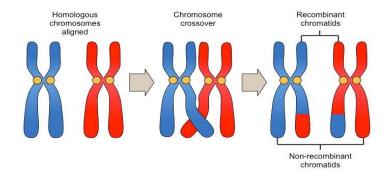













# 

Assignment Footsteps winter semester 18/19



- Strategically quite complex
  - Whether attack or counterattack
- Deterministic and probabilistic strategies to find out the best way of playing Footsteps
  - Using genetic algorithm (crossing over, mutation and selection)





- Represent a game by a collection of game states
  - 3 values each
  - 1<sup>st</sup> remaining points player 1
  - 2<sup>nd</sup> remaining points player 2
  - 3<sup>rd</sup> position of the token (1-7)

 $\rightarrow$  50\*50\*7 = 17.500 mostly possible game states

- For analysis this representation was scaled down
  - Only 20 points in the beginning and 5 circles
    - $\rightarrow$  20\*20\* 5 = 2.000 states
    - Preserving the key aspect of game-play and is more receptive for selective pressure
  - Grouping the circles into 3 groups
    - →20 \* 20 \* 3 = 1.200 states
    - •e.g. [20,20,3] for the initial position

### 2 Footsteps2.3.1 The Deterministic Strategies



- Deterministic → every gene on a chromosome instructs how many points to spend
- Every gene on the chromosome coincide to a unique game state
- The value of the gene being the amount of points
  - For example gene [21,14,3] could be (1 ... 21)
- As far as every gene has a value the individual is able to play against every opponent



- Extension of deterministic strategies
- Each gene consist of the same information
  - Structured [p, q, c] like before
- The value of each genes is a tuple of 'p' values
  - e.g. [4,9,3] = {30,60,70,40}

• 1: 
$$\frac{30}{30+60+70+40} = \frac{3}{20}$$
 3:  $\frac{70}{30+60+70+40} = \frac{7}{20}$ 

• 2: 
$$\frac{60}{30+60+70+40} = \frac{6}{20}$$
 4:  $\frac{40}{30+60+70+40} = \frac{4}{20}$ 

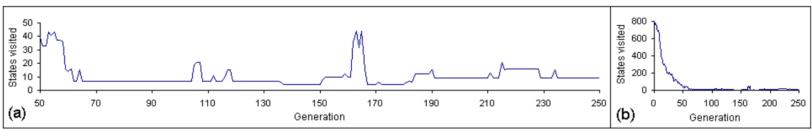
 As far as every gene has a value the individual is able to play against every opponent



- Both strategies were evolved separately
- Strategies competed in an 'round-robin-league, to decide about each individuals fitness
  - Winner gets 3 points, a drawn game results in 1 point each
- Uniform crossover was about 60%
- Probability of mutation was  $\frac{2}{3N}$ , where N is the number of genes
  - every three chromosomes should experience two mutations between them

# 2 Footsteps2.3.3 The Deterministic Result

| [0.4] | [0.5  | [0.7] | [1.2] | [1.1] | [1.2] | [1.6] | [1.8] | [2.3] | ] 1.4   | 3.1   | 2.1   | 3.4   | 2.6 | 3     | 4.1 | 4.3 | 5.2 | 2.5   |   | 0   | 0   | 0.5 | 0   | 0   | 1   | 0   | 0   | 0.4 | 0   | 3.5 | 0   | 0   | 0.7 | 0   | 0   | 0   | 0   | 0              |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------|-------|-------|-----|-------|-----|-----|-----|-------|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------------|
| [0.5] | [0.7] | [1.3] | [0.5] | [1.0] | [1.9] | [2.1] | [1.5] | [1.5  | ] 2.4   | 1.2   | 2     | 3.2   | 3.5 | 4.4   | 2.1 | 5.8 | 2.1 | 6.2   |   | 0   | 0   | 0   | 0   | 0.9 | 0   | 0   | 0   | 0.7 | 0.3 | 0.5 | 0   | 3.8 | 0   | 0   | 0   | 1   | 0   | 0              |
| [0.5] | [0.6  | [0.8] | [1.2] | [1.2] | [1.4] | [2.0] | [1.4] | [2.2] | ] [3.6] | 2.3   | 2.1   | 3.8   | 2.2 | 5.1   | 4.6 | 2.8 | 2.8 | 2.4   | ( | [0] | 0   | 0   | 0   | 0.2 | 1.5 | 0.2 | 0   | 0.1 | 0.6 | 0.5 | 0.1 | 0   | 0   | 4.8 | 3   | 0   | 1.5 | 0              |
| [0.4] | [0.6] | [0.5] | [1.4] | [0.5] | [0.7] | [2.1] | [2.0] | [1.5] | ] [2.0] | 1.3   | 3.5   | 3.5   | 2.7 | 1.8   | 4.1 | 3.4 | 5.3 | 5.3   |   | 8   | 0   | 0.2 | 0   | 0   | 0   | 0   | 1.3 | 1.4 | 0.2 | 0.5 | 1   | 0   | 0   | 0   | 0   | 0   | 0.2 | 0.4            |
| [0.1] | [0.4  | [0.9] | [1.7] | [0.5] | [1.5] | [1.2] | [1.9] | [2.5] | 2.3     | 3.7   | 1.2   | [0.8] | 2.4 | 3.2   | 4   | 1.2 | 2.6 | 5.9   |   | 0   | 0.1 | 0   | 0   | 0   | 0   | 1.8 | 0   | 2.7 | 0   | 5   | 0.4 | 0   | 0.1 | 1.4 | 0   | 0   | 0.4 | 0              |
| [0.5] | [0.8  | [1.0] | [1.2] | [1.9] | [1.2] | 1.1   | 1.1   | [2.4] | 2.9     | [4.2] | 3     | 3.3   | 2.1 | 3.1   | 3   | 3.9 | 5.9 | 5.1   |   | 0   | 0   | 0 ( | [0] | 0   | 0   | 0.3 | 0   | 0   | Ũ   | 0   | 0   | 0.5 | 1.5 | 0   | 0   | 0.2 | 0   | 0.3            |
| [0.5] | [0.5  | [1.1] | [0.8] | [1.5] | [1.7] | [0.8] | [3.1] | 1.6   | [1.9]   | 2.3   | [2.7] | [3.2] | 4.3 | 3.2   | 2.9 | 2.2 | 3.4 | 5.5   |   | 0   | 0   | 0.2 | 8.1 | 1.4 | 0.2 | 0   | 0.7 | 0   | 0   | 0   | 0   | 2.4 | 0.3 | 0   | 1.1 | 0   | 0   | 0              |
|       |       |       |       |       |       |       |       |       | ] [1.4] |       |       |       |     |       |     |     | 2.7 | 4.2   |   | 0   | 0   | 0   | 0.2 | 0   | 0.3 | 0   | 0   | 0.1 | 0   | 0   | 1.2 | 0   | 0   | 0   | 0.3 | 0.3 | 0   | 0              |
|       |       |       |       |       |       |       |       |       | ] 1.8   |       |       |       |     |       | 4.7 | 2.3 | 4.4 | 5.8   |   | 0   | 0   | 0   | 0.2 | 2.4 | 0.8 | 0   | 0   | 0   | Ũ   | 0   | 0   | 0.5 | 0.5 | 0.4 | 6   | 1.9 | 2.5 | 0.5            |
|       |       |       |       |       |       |       |       |       | 2.8     |       |       |       |     | 3.8   | 3.9 | 5.4 | 4.5 | 5.3   |   | 0   | 0.1 | 0   | 0   | 1.2 | 0   | 0   | 0   | 0   | 0.1 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0.4 | 0              |
|       |       |       |       |       |       |       |       |       | ] [2.3] |       |       |       |     |       |     |     |     | 2.6   |   | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 1   | 0   | 1.7 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 2.6            |
|       | -     |       |       |       |       |       |       |       | ] [1.5] |       |       |       |     | 3     | 3   | 3.8 | 3.8 | 5.9   |   | 0.2 | 0.1 | 1   | 0   | 0   | 0   | 0.2 | 0   | 0(  | [0] | 1.9 | 0   | 0   | 0   | 0   | 0   | 0.4 | 0   | 0              |
|       | 0.7   |       |       |       |       |       |       |       | 1.7     |       |       |       |     | 2.5   | 5.3 | 4.4 | 4   | 1.8   |   | 0   | 0   | 0.5 | 0   | 0.3 | 0   | 0   | 0   | 0.4 | J.  | 1.4 | 0.1 | 0.8 | 1.8 | 0.9 | 0   | 0   | 0   | 1.2            |
| 0.3   | 0.4   |       |       |       |       |       |       |       | 3.6     |       |       |       | 2.1 | 1.1   | 4.9 | 5.3 | 6.6 | 5.4   |   | 0   | 0   | 0   | 0   | 0   | 0   | 2   | 0   | 0   | 0   | 0   | 0   | 0.3 | 0   | 0.3 | 0   | 0   | 0   | 0              |
|       |       | [0.7] |       |       |       |       |       |       | 2.8     | 2.8   | · · · | 3.9   | 3.1 | 2.5   | 3.6 | 5.3 | 3.6 | 3.8   |   | 0   | 0   | 0   | 0   | 0   | 2.3 | 1.1 | 0   | 0   | 1.5 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 2   | 0              |
| 0.4   |       | · · · | 0.9   | 0.7   | 1.1   | 1.8   | 1.6   | 1.8   | 2.7     | 4     | 3.2   | 3.7   | 5.2 | 3.1   | 4.6 | 4.1 | 4.7 | 3.4   |   | 0.2 | 0.2 | 0   | 0.9 | 0   | 0.8 | 1.5 | 0.1 | 0   | 0   | 0   | 0.9 | 0.6 | 0   | 0   | 0   | 0   | 0   | 1.7            |
| 0.3   | 0.4   | 1     | 0.9   | 1.2   | 1.8   | 2.4   | 2.4   | 2.3   | 2.8     | 3.1   | 1.5   | 2.4   | 2.7 | [3.7] | 4.2 | 3.7 | 3.1 | 3.5   |   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1.5 | 0.9 | 1.3 | 0   | 0.9 | 2.5 | 0.3 | 3   | 0   | 0   | 0   | 0              |
| 0.4   | 0.6   | 1     | 0.9   | 0.8   | 1.5   |       |       |       |         |       |       | 2.7   | 4   | • •   |     |     | 3.4 | 2.4   |   | 0   | 0   | 1.5 | 0   | 0   | 0   | 3   | 0.4 | 2.5 | 0.1 | 0   | 2.9 | 3.2 | 1.1 | 0   | 0   | 4.1 | 0.8 | 0              |
| 0.4   | 0.5   | 0.6   | 0.9   | 1.5   | 0.8   | 1.9   | 1.8   | 2.4   | 3.7     | 4.5   | 3.4   | 2.5   | 1.8 | 4     | 2   | 3.1 | 2.7 | 6.2   |   | 0   | 0   | 0.5 | 0.4 | 0   | 0   | 0   | 0   | 0.5 | 2.9 | 0   | 0.1 | 0.3 | 1.5 | 3.9 | 0.1 | 0   | 0.3 | 0              |
| 0.5   | 0.2   | 1     | 1.5   | 1.5   | 1.4   | 1.6   | 2.3   | 3.1   | 3.2     | 2.8   | 3.1   | 3.5   | 4.2 | 5     | 3.2 | 3.8 | 4.1 | 4     |   | 0   | 0   | 1   | 0   | 0.5 | 0.4 | 0.7 | 2.4 | 0.2 | 0   | 0.1 | 0   | 0.8 | 0   | 0.8 | 0.2 | 0.4 | 0   | 0.9            |
| 0.5   | 0.5   | 0.8   | 0.6   | 1     | 1.5   | 1.7   | 2.6   | 1.9   | 1.1     | 0.8   | 4.2   | 2.3   | 1.6 | 1.6   | 3.2 | 4.2 | 2.3 | [4.2] |   | 0   | 0   | 0   | 0   | 0   | 0.5 | 0   | 0   | 0.8 | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 0.5 | [0]            |
|       |       |       |       |       |       |       |       |       |         | 2.2   |       |       |     |       |     |     |     |       |   | -   | -   | -   | -   | -   |     | -   | -   |     | -   | -   | -   | -   | -   | -   |     | -   |     | $ \rightarrow$ |


- Standard deviations of the gene values at state [\*,\*,3] = centered token
- Squared brackets → state visited at least one time
- Left figure after 20 generations / right figure after 200 generations
- Every game in the 200<sup>th</sup> generation progressed the same way
  - ([20, 20, 3], [11, 11, 3], [5, 5, 3], [2, 2, 3], [1, 1, 3], [0, 0, 3]  $\rightarrow$  game tied

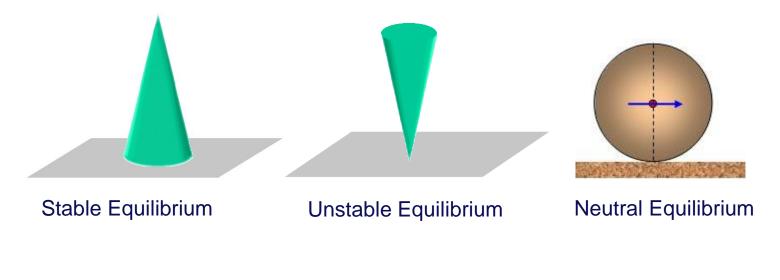


- About 2/3 of the standard deviations are 0 in generation 200
  - Individuals are close to convergence
- Every game itself is a phenotype
- The population converged in the four important game states, but not in the others
  - Population was unconverged genotypically, but converged phenotypically

### 2 Footsteps 2.3.3 The Deterministic Result



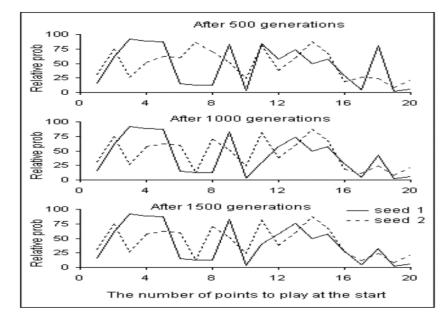



- Graphs show how evolution progressed
- Plateaus indicate, that phenotypes were mostly identical
  - Doesn't mean there was no mutation

→ There were no genotypical changes which changed the phenotypical appearance

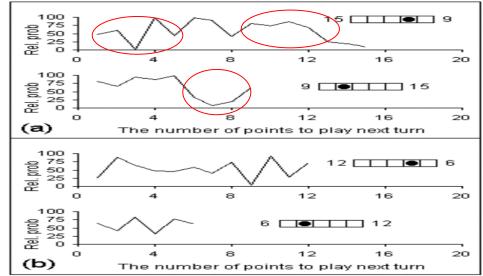
- the evolution is a result of the foregoing experiments
  - In genetic algorithms the environment is a key influence
    - Population == Environment
  - Mutations change the environment and introduce new potential to other individuals
- The fitness of one individual depends wholly on the others alongside




- In case of Footsteps a deterministic strategy is either 'good or 'bad
  - Outcome depends on the given opponents
- 'Footsteps-Individuals' are not evolving in traditional manner towards a good solution
  - They enter a state similar the neutral equilibrium



### 2 Footsteps2.3.4 The Probabilistic Result



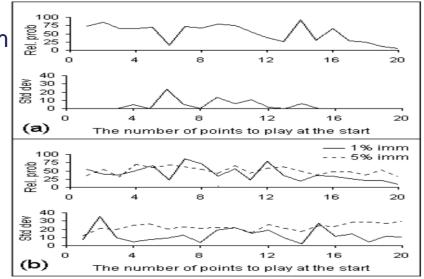

- Probability of spending a certain amount of points at the beginning
- The distributions belong to generations 500,1000 and 1500
- Similarities indicate that the populations were nearly converged
- 2 interesting facts
  - Especially in seed 2 the probability to spend a high amount of points on the first turn is low compared to others
  - Among the other values there is no dominant one
    - •Wide range of choices for the individual
    - →There is no 'best-choice'
      →unpredictability





- The both top plots show a similar situation as in the previous plot
  - Not to many points and across the other choices unpredictability
- The bottom plot of (a) represents the fear of failing to win, more than the fear of losing in that particular turn
  - Low possibilities between 5 9
- Figure (b) looks quite like (a) but is much noisier
  - Indicating a low mutation rate






- Very few genes in the chromosome contribute to the phenotype
  - Selective pressure is only sparely applied
- Genes can be mutated negatively without consequences
- A non-low mutation rate can be problematic
  - 'good' evolutionary changes will probably be corrupted while not expressed
- A low mutation rate leads to little exploration
- Hence a difficult trade-off arises:

safe building blocks & insufficient exploration vs. sufficient exploration & unsafe blocks



- Outcome of an evolution with too much mutation
- (a):
  - Desired average genotype (top plot)
  - Quite high standard deviations across the population (bottom plot)
    - $\rightarrow$  high variety
  - High mutation rate did not lead to a precise genotype
- (b):
  - Trying to bypass the problem of (a)
  - Use random immigrants
  - Effective raising of the standard deviations



#### 3 Conclusion



- In genetic algorithms it is important to measure convergence phenotypically
  - Only some of the chromosome's genes contribute to their individual's phenotypical development.
  - Populations may converge phenotypically but not genotypically
- Deterministic Strategies are faulty, accounted by their exploitability
  - If you know what your opponent is going to do you can easily react to his turn
- Probabilistic Strategies work better
  - Situation of attack and counterattack
  - Best approach is unpredictability (including chicanery and randomness)



- Selected Sources:
  - Richard Dawkins. The Blind Watchmaker. Longman, first edition, 1986.
  - J. J. Grefenstette. Genetic algorithms for changing environments. Parallel Problem Solving from Nature 2, 1992.
  - http://www.diracdelta.co.uk/science/source/e/q/equilibrium/source .html#.W-VqCJNKjD5, 07.11.2018 .
  - Robert Morris / Tim Watson. Evolving Strategies for the Game Footsteps, Proceedings of the 2008 UK Workshop on Computational Intelligence.
  - Alessandro Bonatti. 15.025 Game Theory for Strategic Advantage. Spring 2015. Massachusetts Institute of Technology: MIT OpenCourseWare.
  - https://physicsabout.com/states-of-equilibrium/, 07.11.2018.