FOOTSTEPS

A psychological game .

Pencil and paper

Five minutes

A little game of surprising subtlety

Background

This simple-to-play psychological game combines mind-reading with bluff, mental arithmetic and just a little luck.
A proprietary version is marketed as Quo Vadis (Invicta).

Play

The'board' consists of seven circles or marks in a straight line, spaced so that each circle is large enough to
accommodate a small token. A line is drawn through the central circle. The three circles on each side of it
belong to the respective players (see Figure 39).
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Each player starts with 50 points. On each turn, both players write down the number of points that they wish to
spend. The minimum allowed is 1. Numbers are then compared and the player with the larger humber advances
the token, which is placed at the start of each game in the central circle, one space into his opponent's territory.
If the numbers are equal, the token is not moved. Both players now deduct the points they have used from their
allocation of 50 to give their remaining total of points, and the next turn starts. The object of the game is to get
the token on to your opponent's end circle; or, put another way, to win three more turns than your opponent. If
one player uses up all his points, the other can have successive plays. If both use up their allocations, the game
can either be agreed drawn or a half-victory awarded to the player in whose territory the token does not lie. And
that is all there is to the game - but don't underestimate it.

Strategy

The subtleties of Footsteps will not become apparent until you have played a few games. The ideal to be aimed
at, of course, is to win each turn by a single point. To allow your opponent a big lead on points is to face certain
loss. In the early stages a margin of 5 or 6 points is acceptable, but later this could be severe. An extreme case
is where you have got the token to within one space of victory but have used up all your points. Your opponent,
however, has 5 points left. Clearly he has only to play 1 point each turn to win.

Be frugal with your points until danger threatens. Consider the situation where the token is on the centre and
you have each used 30 points. You decide to allocate 9 to your next turn (you wouldn't do this if you'd played the
game twice!) and you fmd that your opponent has only allocated the minimum permissible of 1. Now you are
two spaces from victory but your opponent has 19 points left to your 11. If you now play 8, for example, your
opponent may again play 1, and although this puts you within a space of home, you have only 5 points left to
your opponent's 18 - an unacceptable margin. Your opponent next plays 5 (in case you gambled all your
remaining points) and thereafter will force a win by a series of Jow plays: remember that you are obliged to use
at least 1 point on each turn. It wiH now be dear where the mind-reading comes in. Some people seem to have
second sight at this game, particularly when playing with dose friends or relatives.

Psychic players could claim that it is an advantage to let the opponent write his humber down first. The way
round this is to keep the action concealed with, say, a one-minute time limit per move.

Good advice for Poker is good advice for Footsteps: never play routinely. If you always play low your opponent
can advance quickly by pitching a few points higher each time. If he reaches the penultimate space you are
obliged to equal his point count, so it is better to stop him one space further back. But he may read your thinking
on this and - well, as | said, the subtleties of the game will soon become apparent.

Variants

The seven-space board and the fifty-point allocation give a quick and balanced game, but you may prefer other
parameters.

Incidentally, a couple of pocket calculators are a useful aid for Footsteps. Start with 50 on the display and at
each turn compare negative inputs.
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Abstract

Footsteps is a two-player board game in
which the objective is to move a counter,
one step at a time, to one’s own end of
the board, by spending points. Though
the game is simple in conception, it is
unusual and strategically quile complex,
and it captures the essence of the impor-
tant tactical dilemma of whether to at-
tack or to sit back and then counter at-
tack. In this paper, deterministic and
probabilistic strategics are evolved for the
game of Footsteps. The noteworthy as-
pects of the genetic algorithm used here
are discussed, and it is concluded that un-
predictability is the key to success.

1 Introduction

For decades, game theory [8] has been of great
use in many differen( academic disciplines, par-
ticularly biology and economics. Some examples
of topics that have been enlightened by game
theoretic analysis are: the Battle of Bismark
Sea in the Second World War [14], aggressive
hchaviour of animals [17], and whether or not
to invest venture capital [18]. Perhaps the best
known, and certainly the most studied [5], is the
Prisoner’s Dilemma (PD), often in an iterated
form (IPD). The value of this game lies primar-
ily in the fact that it captuwres, in as simple a
way as possible, the essence of the dilemma of
whether to co-operate or defect.

This paper reports an experimental investi-
gation into the board game ‘Footsteps’ [1, 2]}, a
two-player game of complete information. The
rules of the game are as follows.

The board (figure 1) has seven sections, sepa-
rated by vertical lines; the left end is player one’s
end, and the right is player two’s. A counter is
placed in the middle section, and the two players
are allocated 50 points each. Tn each turn, the
players simultancously and independently sub-
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Figure 1: The layout of the board for Footsteps

mit some of their points (between zero and their
current total): if one player submits more points
than the other, he wins the round, and moves
the counter one step towards himself; il both
players submit the same number of points, the
round is tied, and the counter does not move.
The object of the game is to win the counter.
If the counter reaches one of the outer sections,
the player whose end it is wins the game, and
his opponent loses; if, however, the players both
run out of points before the counter has reached
an extremity, the game is tied.

The size and simplicity of this game are in
stark contrast with the seemingly intractable
complexity of its game-play. In the absence of
knowledge of one's opponent’s intentions, the
question of how many points to play next is
very difficult to answer convincingly. Crudely
speaking, in any given turn, a player must decide
whether to submit a ‘large’ number of points (to
atiract the counter), zero points (to absorb a
potentially large number from his opponent), or
a ‘small’ number, as a gamble. And when the
counter is one or two steps away from someone’s
end, the pressure on these decisions rises.

Whereas the Prisoner’s Dilemma models
co-operation, Footsteps models attack-versus-
counterattack. This topic has not yet been ad-
dressed dircctly by game theorists, with the clos-
est work being that pertaining to predatory pric-
ing and the chain-store paradox [16]. There are
many manifestations of attack-or-counterattack
in the real world, from sporting and military
strategics to political election campaigning, so
a game like Foolsleps merits investigation as
strongly as any other abstract game.

Tu section 2, the genetic algorithm that was

1. Also known as ‘Citadel’ and ‘Quo Vadis?’
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used to evolve the strategies is presented. In
section 3, the results of the experiments are dis-
cussed, and section 4 is the conclusion.

2 The Representation and
Evaluation of the Strategies

There have been numerous instances of the
computational evolution of strategies for games
(12, 6, 15], e.g. the IPD [11, 9], Chequers [7],
Rock-Paper-Scissors (4], and Awari [10]. The
strategies themselves have varied from look-up
charts to multivariate funclions (o tree searches,
and many of them have proved very successful,
against both human and machine opponent.

2.1 The Representations

In Footsteps there is a space of every possible
state the game can occupy. Each state consists
in three variables: the number of points player
one has (0-50), the number of points player two
has (0-50), and the position of the counter (1—
7). There are thus 51 x 51 x 7 = 18,207 points
in the state space, the majority of which are vi-
able game states (some points cannot be game
states, e.g. (50,50,3) because the counter cannot
have reached board-section 3 without player one
having spent a single point). A game of Foot-
steps can be viewed as a journey through this
state space, starting always in the initial state
(50,50,4), and whose length and progression are
determined by the decisions of the players.

The state space for regular Footsteps is very
large, so for this investigation, a scaled-down
version was used, where the players started with
20 points and there were only 5 sections on the
board. This smaller version was computation-
ally less taxing, easier to analyse, and recep-
tive to more selective pressure than full Foot-
steps would have been, whilst being big enough
to preserve the key aspects of game-play (the im-
portant first decision, and the challenge of being
one turn away from losing).

2.1.1 The Deterministic Strategies

The representations of the strategies are based
on this conception. For the deterministic kind,
every gene on the chromosome corresponds to
a unique game state, with the value of the gene
being the instruction of how many points to play
there. The lowest number of points allowed to
be played was raised from zero to one, to prevent
the possibility of games running indefinitely, so
the chromosome length was 20 x 20 x 3 = 1200

genes. (The 3 signifies the middle 3 sections —
the outer 2, when reached, represent the end of a
game, so they do not require next-turn instruc-
tions.) At a given locus, the gene value must
lie between one and the number of points the
player currently has; for example, the gene for
state (15,12,3) must be an integer in [1..15].

When every gene in a given individual’s chro-
mosome has been set to a viable value, it is ready
to play against any opponent. For every scenario
that can arise, there is a legal instruction of what
to do next.

2.1.2 The Probabilistic Strategies

The probabilistic strategies are an extension of
the deterministic ones. Whereas those have one
gene for state (p,q,c), its value in [1..c], these
have c genes, where each gene’s value — in [1..99]
— represents the relative probability of that num-
ber of points being submitted. This raises the
chromosome length to 13,167 genes®, an order
of magnitude increase. As an example of how
they work, if the genes corresponding to state
(4,9,3) were {30,60,70,40}, then the individual
— when in that state in a game — would have a
30/(304 60+ 70 +40) = 3/20 likelihood of play-
ing one point, a 6/20 likelihood of playing two
points, a 7/20 likelihood of three points, and a
4/20 likelihood of four.

It is again the case that when every gene in a
given individual’s chromosome has been set to a
viable value, it is ready to play against any op-
ponent. For every scenario that can arise, there
is a selection of weighted legal next-moves, from
which a probabilistic choice can be made.

Both strategy types were evolved separately
in distinct experiments. They were not evolved
together for this paper because trial runs failed
to produce notable new results, at the cost of
complicating and extending the parameter set.

2.2 The Fitness Function

Populations of 100 individuals were used, and in
every generation there was a round-robin league.
For the deterministic strategies, each fixture
comprised one game, but for the probabilistic
strategies, because very many games could arise
between any two players, cach fixture comprised
a sequence of 10 games. In games where there
was a winner, the winner was awarded 3 points

2. Some of these genes relate to game states that
cannot occur. To have weeded out every such state
would have been to complicate the chromosome
without gaining anything, so they were left, in.
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and the loser none; in games that were drawn,
both players were awarded 1 point. At the end
of the generational leagues, the point totals be-
came the fitnesses.

3 The Results

The parameters were essentially the same in
both sets of experiments. Standard propor-
tionate selection was used, there was uniform
crossover across 60% (on average) of each newly-
selected population, and the mutation rate was
set to a value to cause every three individuals
to experience two mutations between them (so
if the chromosome was N genes long, the gene-
wise mutation probability was SLN) The ques-
tion of mutation will be discussed later in more

detail.
3.1 The Deterministic Results

Figures 2 and 3 (at the rear) contain the key re-
sults pertaining to the deterministic strategies.
Figures 2(a) and 2(b) are snapshots of the ex-
tent of the convergence of a population. In par-
ticular, they show the standard deviations of the
gene values at the loci corresponding to the game
states where the counter is in the middle section
(so they represent exactly % of the chromosome).
For example, the bottom-right slots correspond
to the initial state, (20,20,3). Square brackets in-
dicate that that state was visited — in the course
of a game — on at least one occasion during the
generational league.

In figure 2(a), taken after 20 generations, the
local standard deviations vary greatly, showing
that the population is very genetically diverse.
The large quantity of square brackets shows that
many different game states were visited in that
generation. This was because different individ-
uals had different instructions for what to do in
the states that arose.

In 2(b), taken after 200 generations, around
% of the local standard deviations are zeroes,
suggesting that the population is close to con-
vergence. Only four game states were visited in
this generation, and in those loci, the population
is converged. This communicates the fact that
though the population was unconverged geno-
typically, it had converged phenotypically. This
is because the phenotypes here are the games
themselves; every game in that generation was
played out in the exact same way3, because in
the loci corresponding to its states, the individ-
uals all had the exact same genes.

Figure 3 gives further information about how
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evolution progressed in this GA. 3(a) shows how
the total number of game-states visited varied
between the 50th and 250th generations of a run.
The plateaux indicate situations where one — or
a few — phenotypes are prevalent; where only
one — or a few — games are played out in the
league. The rises that terminate the plateaux
show those occasions where a mutation occurred
which changed the value of a gene that was con-
tributing to a phenotype. Sometimes, the mu-
tant was a loser and so died off, and the old order
was restored, but when it was not a loser, copies
of it persisted in the population.

This is the key result of the foregoing ex-
periments. In strategy GA’s like this, the envi-
ronment is rooted in the population, making it
dynamic ([9], §1.1), so phenotypic convergence
is synonymous with environmental stationarity.
Mutations (and random immigrations [13], and
any other introductions of diversity) therefore
change the environment, in a way that can be
trivial or profound. In other words, an individ-
ual’s fitness is wholly dependent on which other
individuals are in the population alongside it.

In the setting of Footsteps, this means that
a given deterministic strategy is ‘good’ or ‘bad’
according to its opponent(s). Any given sensi-
ble? strategy, whilst being able to beat many
opponents, can also be defeated by many oppo-
nents. Because of this, rather than the popu-
lations evolving in the traditional manner (‘up-
wards, towards a good solution’) they enter a
state that is analogous to neutral equilibrium [3].
They remain in a phenotypically converged state
until some mutation displaces them into a new
state, and so on.

3.2 The Probabilistic Results

Figures 46 (at the rear) contain some selected
results pertaining to the probabilistic strate-
gies. Figure 4 shows the mean values (for the
whole population) of the genes that determine
the number of points to play at the start of a
game. There are 20 genes at that part of the
chromosome, each one representing the relative
probability (from 1 to 99) of choosing that par-
ticular number of points. The probability dis-
tributions are shown from 500, 1000, and 1500
generation milestones, and the similarities (by
seed) reveal that the populations were nearly

3. The exact progression was: (20,20,3), (11,11,3),
(5,5,3), (2,2,3), (1,1,3), (0,0,3) — game tied.

4. “Sensible” here means: not needlessly spending
S0 many points in a given round that one cannot
realistically go on to win the game.
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converged there (the standard deviations — not
shown in the fgures — were mostly zeroes, cor-
roborating this observation).

There are two important things to notice in
these plots. Firstly, that the rightmost genes
acquired small values (in the non-dotted curves,
you can see this physically happening). In the
game, this translates as: “Do not play 16-20
points on your first turn.” This was to be ex-
pected, because such moves make it practically
impossible for the player to go on to win.

Secondly, across the range of possibilities
that do not put the player in big trouble, there is
no single dominant value. In fact, there is a wide
range of choices of what do, making the player
unpredictable at this point in the game. Addi-
tionally, a wide range of likely choices (in gen-
eral) can contain a $mall number of less-likely
ones without reducing the overall widih — this
supports the notion that where some values are
small for one seed, it was because they were not
essential for the range, and not because they
were inherently bad.

Figure 5, whose plots are in the same for-
mat as those in figure 4, shows the probability
distributions for two situations where the game
could end on the next turn. In (a), the top plot
shows the range of possibilities for a player in
state (15,9,4), and the bottorni shows the range
for state (9.15,2). the exact opposite sitnation.
In the top plot, as before, it can be seen that the
moves which make the game un-winnable have
low probabilities of being chosen, and across the
remaining options there is an (approximately)
unpredictable c¢hoice. The sitnation is similar
in the bottom plot of (a), but where the lower
probabilities at the high end represent the fear
of failing to win, more than the fear of losing in
that turn.

In 5(b) — which represents a similar pair of
situations to (a) - the curves are somewhat nois-
ier. The top plot, witl its relative uniformity
at the left and its pair of very small values
al the right, has the appearance of being only
‘hall evolved’ compared to its counterpart in (a).
This was probably on account of the low muta-
lion rate, which is now discussed.

A characteristic of this GA is that not all (in
fact, very foew) genes in the chromosome con-
tribute to the phenotype. This means that in-
stead of selective pressure being continually ap-
plied everywhere, it is anly applied across a dif-
ferent subset of loci each time. The absence
of selective pressure for variable periods of time
on a given gene means that it can be mutated
negatively with no consequences. A non-low

mutation rate therefore becomes a dangerous
thing, because goad genetic building-blocks will
most probably be corrupted while they are non-
expressing. And if the chromosome is long (as
Is the case here), a low mutation rate equates {o
little exploration, so a difficult trade-off arises:
safe building blocks & insufficient exploration
versus sufficient exploration & unsafe blocks.

Figure 6 shows what happens when there is
too much mutation/exploration. In 6(a), it can
be seen that though a desirable average geno-
type emerged after 1000 generations, the stan-
dard deviations of the population-wide alleles
were generally high, indicating variation. Had
this GA been seeking a precise genotype, as op-
posed to the sort il has been reported to have
been, then this variation would have represented
corruption.

6(b) shows the result of an attempt to by-
pass the corruption problem of non-low muta-
tion whilst still having good exploration. Ran-
dom immigrants were added in every generation,
with the hope being that good genes from good
immigrants would be able o entor the popula-
tion, and bad genes would not. The lower plot in
() shows that in fact, the immigration scheme
represented an effective raising of the standard
mutation rate. This was because enough immi-
grants were surviving to pass their genes into the
population via crossover, injecting more than a
moderate mutation operator would, And the
dotted curve in the upper plot of (b) commu-
nicates the fact that having a mere 5% of im-
migrants per generation is comparable to ran-
domising the individuals.

4 Conclusions

Deterministic and probabilistic strategies were
evolved for the game Footsteps. Tt was found
that the deterministic kind are flawed because
of their exploitability, and that the probabilistic
kind — when they are unpredictable — are good.
The first conclusion of this paper is therefore
bhat in siluations of attack or counterattack, the
best general stralegy is unpredictability (which
includes decepliveness as well as randommness). If
an opponent knows how you will behave (even if
you are using biased probabilities), then he has
the opportunity to exploil you. An example of
this from the real world is the football match
between Arsenal FC and Aston Villa F'C in the
2002/03 season of the English Premier League.
Arsene Wenger’s Arsenal had acquired a reputa~
tion for fast counteraliacking [ootball, so Gra-
ham Taylor had his Villa side play defensively
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for most of the match. The game was drawn
(giving Villa one point instead of zero), and af-
terwards, Wenger criticised Taylor’s negative at-
titude. Taylor’s reply was that the alternative
would have been to hand them the game.

The second conclusion is that in GA’s where
only some of the genes are used in any given
phenotypic development, convergence should
be measured phenotypically, not genotypically.
This is because the population could converge
phenotypically on an acceptable solution, with-
out being converged genotypically, giving the
impression — from the genetic point of view —
that no solution had been found. The conse-
quences of using a misleading convergence met-
ric include wasting time and energy on unnec-
essary searching, and overlooking solutions alto-
gether.

The third and final conclusion concerns GA’s
with long chromosomes where the selective pres-
sure is not universally applied, for whatever rea-
son. In these GA’s, what was already a difficult
search is further compounded by the problem
of mutation. The higher the mutation rate, the
more the chromosomes will be damaged by un-
rejected mutations, but the lower the rate, the
weaker the search and the less the capacity to
evolve. If the representation of a problem puts
its GA into this category, then a more sophis-
ticated technique than artificial evolution ought
to be used instead. This is not a criticism of
evolutionary computing, but a delimitation in
its range of viable application.
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Figure 2: (Deterministic strategies.) The population

-wide stundurd deviations of the gene values af the loci that correspond to

the game states where the counter is in the middle of the board. The left half shows them afler 20 generations, and the right
half after 200, from the same run. Square brackefs indicate that that state was visifed at least once by at least one individual
in that generation’s league. It can be seen in the right half of the figure that though the population is unconverged genotypically,

it is converged phenotypically.
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Figure 3: (Deterministic strategies.) The number of different game-states visited in total in each generation of a run:
(a) between generations 50 and 250, and (b) between generations 0 and 250 of the same run.
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Figure 4: (Probabilistic strategies.) The
population-wide averages of the gene
values that refer to the starting state; in
other words, the probability distribution
for the first turn. Shown for two random
seeds and at three generation marks. The
selective advantage in low values at the
right and mixed values elsewhere is
visible. That the populations converged
in that part of the chromosome is also
visible.

Figure 5: (Probabilistic strategies.) The
population-wide averages of the gene
values referring to both sides of two
situations where the game could be won
in the next turn, taken after 1000 gen-
-erations. The inget diagrams show the
exact situations, and the plot belongs to
the left player. A reluctance to render the
game unwinnable (i.e. small values at the
right) is visible in the top plot in (a), but
not in the same place in (b).
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Figure 6: (Probabilistic strategies.) The
population- wide means and standard
deviations of the gene values that refer to
the starting state, taken after 1000 gen-
-erations, (a) for a mutation rate 10 times
bigger than was used for the other results,
and (b) with 1% and 5% random imm-
-igrants added in every generation. The
standard deviations — which were mostly
zeroes for the other results — show the
level of persistent diversity, an indicator
of corruption.




