
Efficient Primality-Tests
Seminar Paper

Author: Lars Reimers <reimers.lars@hotmail.de>

Date: 27.02.2019

Lecturer: Prof. Dr. Sebastian Iwanowski

Contents

1 Abstract 1

2 Definition of Primality 1

3 Complexity Classes and Notation 1

4 Trivial Tests 3
4.1 Wilson’s Theorem . 3
4.2 Trial Division . 3

5 Fast deterministic Tests 4
5.1 Preparation: Fermat’s Little Theorem . 4
5.2 Agrawal-Kayal-Saxena Test . 4

6 The Algorithm 7

2

Abstract

This paper is part of a seminar about mathematical applications. It is supposed to give an
overview of efficient primality testing by the example of the so-called AKS primality test. Most
information is taken directly from the original work by Agrawal, Kayal and Saxena [1] with
the formulas being explained more detailed and steps that have been skipped or merged in the
original work being stretched out. Therefore the structure of this paper is oriented by their
structure and some formulations may be copied since there was nothing to add to them. Cases
where these formulations exceed single sentences have been explicitly marked.

Definition of Primality

The most common definition of primality refers to a number having no divisors besides 1 and
the number itself. Formally this can represented as:

Let p ∈ N, p > 1, then p is prime if:

∀n, n ∈ N, n > 1, n < p : n - p (1)

Another possible definiton is, that a prime can not be represented as the product of two
natural numbers. This is equivalent to the above definiton but leads us closer to the term
composite number which refers to any number that is not a prime and therefore composable by
multiplying two natural numbers. This term will be commonly used in this paper and referenced
papers.

Complexity Classes and Notation

Complexity classes are an abstract measurement to declare the rate of growth of a computation
with increasing size of the input. These classes are commonly notated in theBig O Notation.
The given term gives an estimate of the growth of computation efficiency and is conventionally
melted down to the highest factoring subterm since the other subterms do not have an influence
with input size nearing infinity. Computation efficiency can here refer to multiple factors, like
computation time, used space in memory or used amount of an ‘expensive’ operation.

Common time complexities are:
Time Complexity Big O Notation Example

constant time O(1) Find the first item of a list

linear time O(n) Find the smallest item in an unsorted list

exponential time O(2p(n)) Many games, including Go with the Japanese ko-rules

factorial time O(n!) Solving the traveling salesman problem

Common complexity classes are:
Name Description Example

P polynomial time Checking if a number is prime

NP nondeterministic polynomial time Finding a Hamiltonian path or cycle

NP-hard ”at least as hard as the hardest problems in NP” Subset sum problem

NP-complete intersection between NP and NP-hard Finding a Hamiltonian path or cycle

1

The connection between these complexity classes can be shown as follows:

From: https://en.wikipedia.org/wiki/File:P_np_np-complete_np-hard.svg

Soft O
In most primality tests the so called soft-O-notation is used. This notation ignores logarithmic
factors for they become irrelevant with the typical present growth rates. It is shorthand for:

Õ(g(n)) = O(g(n) ∗ logkg(n)) for some k (2)

2

https://en.wikipedia.org/wiki/File:P_np_np-complete_np-hard.svg

Trivial Tests

4.1 Wilson’s Theorem

Wilson’s Theorem states that:

(n− 1)! ≡ −1(mod n) if and only if n is prime (3)

Using this algorithm needs (n − 2) multiplications, leaving us with a time complexity of
O(n). Since we want to connect the time complexity to the size of the input, we have to take
that into account. For a number n it requires log2 n bits to represent it, leading to a time
complexity of O(2log2 n) which is an exponential time complexity.

Proof
The proof is trivial for n = 2.

For all n ≥ 3, assume that there is some prime number q with 2 ≤ q ≤ n− 2 which divides
n. If (n− 1)! is congruent to −1(mod n) then it is also congruent to −1(mod q). Since (n− 1)!
contains a term equivalent to q, it is congruent to 0(mod q). This contradiction proves, that
the above equation is not true for any composite number.

4.2 Trial Division

Given the original definition we gave in Section 2 the most straightforward primality test is trial
division. For this we divide the number to check n with every number q with 2 ≤ q ≤ n − 1.
Using this needs at most (n − 2) divisions and leads to the same time complexity as Wilson’s
Theorem of O(2log2 n). This algorithm is more efficient for composite numbers, since we can
quit, once we found a divisor.

Optimization
The above algorithm can be further optimized by limiting q to 2 ≤ q ≤ d

√
ne since if n has a

divisor d with d > d
√
ne we would still find the complement of d with n/d which then has to

be smaller than d
√
ne.

This leads to at most d
√
ne divisions, resulting in the same complexity class as before since

constant factors are ignored. The average runtime is reduced though.

3

Fast deterministic Tests

5.1 Preparation: Fermat’s Little Theorem

Fermat’s little theorem states that:

ap ≡ a(mod p) (4)

It can be proven through induction with the anchor being 0p ≡ 0(mod p). To prove that
the theorem holds for a = k + 1 if it’s true for a = k, we define the following lemma for any
integers x and y and prime p:

(x+ y)p ≡ xp + yp(mod p) (5)

Combined with the binomial theorem, the left half of Equation (5) expands to:

n∑
i=0

((
n

i

)
∗ xn−i ∗ yi

)
(mod p)

⇔
n−1∑
i=1

((
n

i

)
∗ xn−i ∗ yi

)
+ xp + yp (mod p)

(6)

Since all terms of
(
n
i

)
contain a prime factor n if n is prime and are therefore 0(mod p), the

term is equivalent to xp + yp(mod p) and the lemma is therefore proven. Further information
on why this holds can be found in the section about AKS’s lemma 2.1.

The induction step assumes that kp ≡ k(mod p). Now we consider k + 1:

(k + 1)p ≡ kp + 1p(mod p) (7)

Given the induction hypothesis, kp ≡ k(mod p) and 1p ≡ 1(mod p):

(k + 1)p ≡ kp + 1p(mod p)

⇔(k + 1)p ≡ k + 1(mod p)
(8)

This is the resulting statement for a = k + 1 and therefore concludes the proof for Fermat’s
little theorem.

5.2 Agrawal-Kayal-Saxena Test

This test was proposed by Manindra Agrawal, Neeraj Kayal and Nitin Saxena (from now on
referred to as AKS) in their paper PRIMES is in P. [1]

AKS’s lemma 2.1 states:
Let a ∈ Z, n ∈ N, n ≥ 2 and (a, n) = 1. Then p is prime if and only if:

(X + a)n = Xn + a(mod n) (9)

First to explain some of the used symbols: (a, n) = 1 represents the greatest common divisor
of a and n being 1, showing that a and n are coprime. X is to be seen as a variable.

The proof bases on first moving the right term to the left side of the equation:

(X + a)n − (Xn + a) = 0(mod n)

⇔ (X + a)n −Xn − a = 0(mod n)
(10)

4

The minuend can be expanded to:

(X + a)n

⇔
n∑
i=0

((
n

i

)
∗ an−i ∗Xi

)

⇔Xn + an +
n−1∑
i=1

((
n

i

)
∗ an−i ∗Xi

) (11)

Combined with the subtrahent we have:

Xn + an +
n−1∑
i=1

((
n

i

)
∗ an−i ∗Xi

)
−Xn − a

⇔ (an − a) +

n−1∑
i=1

((
n

i

)
∗ an−i ∗Xi

) (12)

Because of modular arithmetic we know that:

a+ b ≡ 0(mod k)

⇔ a ≡ 0(mod k) ∧ b ≡ 0(mod k)
(13)

and therefore we can view the summands of Equation (12) separately.

5

There are two scenarios: either n is prime or n is composite.

n is prime
The left summand is trivially proven with Fermat’s little theorem since

an − a = 0(mod n)⇔ an = a(mod n) (14)

which is true if n is prime.

For the right summand we can focus on the coefficents, namely
(
n
i

)
with 0 < i < n− 1.(

n

i

)
=

n ∗ (n− 1)(n− 2) · · · (n− (k − 1))

k(k − 1)(k − 2) · · · 1

= n ∗ (n− 1)(n− 2) · · · (n− (k − 1))

k(k − 1)(k − 2) · · · 1

(15)

Since n is presumabely prime, the fraction will still result in a natural number and therefore we
know that

(
n
i

)
≡ 0(mod n). Given that

a ≡ 0(mod n) ∨ b ≡ 0(mod n)

→ a ∗ b ≡ 0(mod n)
(16)

we know that the whole term for every part of the sum,
((
n
i

)
∗ an−i ∗Xi

)
, is 0 for all values

of i. Together with Equation (14) we now have a sum of terms that are all ≡ 0(mod n) and
according to Equation (13) that leads to the whole Equation (12) being ≡ 0(mod n). With this
we’ve shown that lemma 2.1 proposed by AKS holds if n is prime.

n is composite
Assume there is a prime q and an integer k with qk dividing n where k is as high as possible,
then n = λ∗qk with λ ∈ N. It is enough to take a look at the term for Xq which is

(
n
q

)
∗an−q∗Xq.

We can show that qk -
(
n
q

)
via contradiction by assuming there is a r ∈ N with r ∗ qk =

(
n
q

)
:

r ∗ qk =

(
n

q

)
⇔r ∗ qk =

n ∗ (n− 1)(n− 2) · · · (n− (q − 1))

q(q − 1)(q − 2) · · · 1
divide both sides by qk

⇔r =
λ ∗ (n− 1)(n− 2) · · · (n− (q − 1))

q(q − 1)(q − 2) · · · 1

(17)

By definition q - λ and !∃q with q|x and x in [n− 1 · · ·n− q+ 1]. Therefore the fraction can not
result in an integer and r /∈ N and we’ve shown that qk -

(
n
q

)
We can also show that qk - an−q since q - a → q - an−q → qk - an−q and qnmida can be

trivially shown since:
q|n and (a, n) = 1→ q - a (18)

Therefore
(
n
q

)
∗an−q ∗Xq will not be 0(mod n) and Equation (9) is not fulfilled by composite

numbers, as stated above.
Calculating this would take at least exponential time and is therefore not the solution to

determine primality in a fast manner.

6

Adaption of the equation

AKS propose a modified version of Fermat’s little theorem for polynoms which is calculatable
in polynomial time but can not detect pseudoprimes:

Let a ∈ Z, n ∈ N, n ≥ 2 and (a, n) = 1. Then p is prime if and only if:

(X + a)n =Xn + a(mod Xr − 1, n)

⇔(X + a)n −Xn − a =0(mod Xr − 1, n)

⇔(X + a)n −Xn − a =(0(mod Xr − 1))(mod n)

(19)

This is proven for primes the same way as above. As stated, some composites will also fulfill
this equation and therefore additional checks need to be added to the algorithm.

The Algorithm

As a note, all references to log mean the logarithm to base 2 and all references to ln mean the
natural logarithm (to base e).

Input: integer n > 1.

1. If n = ab for a ∈ N and b > 1, output COMPOSITE.
2. Find the smallest r such that or(n) > log2n.
3. If 1 < (a, n) < n for some a ≤ r, output COMPOSITE.
4. If n ≤ r, output PRIME.

5. For a = 1 to b
√
φ(r)log nc do

if ((X + a)n 6= Xn + a(mod Xr − 1, n)), output COMPOSITE;
6. Output PRIME.

where
or(a) describes the smallest number k such that ak = 1(mod r) with a ∈ Z, r ∈ N, (a, r) = 1
and
φ(r) for r ∈ N describes the euler totient function which is equal to the number of numbers less
than r that are coprime to r.

The proof bases on two lemmas:
• If n is prime, the algorithm returns PRIME
• If the algorithm returns PRIME, n is prime

If n is prime, the algorithm returns PRIME

• In step 1, if n is prime, the algorithm doesn’t output COMPOSITE.
• In step 2, the algorithm doesn’t output anything.
• In step 3, if n is prime, the algorithm doesn’t output COMPOSITE.
• In step 5, if n is prime, the algorithm doesn’t output COMPOSITE.

So if n is prime the algorithm outputs PRIME in either step 4 or in step 6.

7

If the algorithm returns PRIME, n is prime

“If n is prime then steps 1 and 3 can never return COMPOSITE. By [Equation (10)], the for
loop also cannot return COMPOSITE. Therefore the algorithm will identify n as PRIME either
in step 4 or in step 6.” [1]

If step 4 outputs PRIME then n ≤ r so all possible factors would’ve been found in step 3
since all integers ≤ r are tested for coprimality to n.

The only remaining step in which PRIME can be output is step 6. For the proof it is
assumed that step 6 outputs PRIME and that n is a composite number since the proof is based
on building a contradiction.

As Nair has already shown in [2], if LCM(m) denotes the least common multiple of the first m
natural numbers:

LCM(m) ≥ 2m for m ≥ 7 (20)

The original work defines an upper bound for the r defined in the algorithm:

∃r with r ≤ max{3, dlog5ne} such that or(n) > log2n (21)

This is trivially shown for n = 2 since r = 3 satisfies all conditions. Therefore we can assume
n > 2 meaning dlog5ne > 10 and the lemma in Equation (20) always applies. We define
B = dlog5ne and by that definiton the largest value of k for mk ≤ B with m ≥ 2 is blogBc.

To prove the upper bound for r consider r1, r2, · · · , rt being all integers that either fulfill
ori(n) ≤ log2n or divide n. All of these numbers divide the product:

n ∗
blog2nc∏
i=1

(ni − 1) which is ≤ nlog4n ≤ 2log
5n (22)

Taking into account that the lcm of the first dlog5ne numbers is atleast 2dlog
5ne and the

above product is smaller than 2dlog
5ne there must exist a number s ≤ dlog5n that is not equal

to any of {r1, r2, · · · , rt}.
If that s is coprime to n then os(n) > log2n since otherwise it would’ve been a factor of

Equation (22) and therefore we found a value fulfilling our demands and define r = s.
If s and n are not coprime, there exists a number r = s

(s,n) that is not in {r1, r2, · · · , rt}
since s is by definition not a factor of n and so (s, n) must be in {r1, r2, · · · , rt}.

With this we’ve proven the existence of a number r that satisfies the given borders.
Additionally we will define a prime divisor p of n such that or(p) > 1. p must exist since
or(n) > 1 and must be greater than r since otherwise step 3 or 4 would’ve determined already
whether n is prime. Since both n and p are coprime to r, we know that both numbers are
in Z∗r . For the rest of this proof we will assume r and p to be fixed and additionally define
` = b

√
φ(r)log nc.

8

AKS define the term introspective for a polynomial f(X) and a number m ∈ N such that:

[f(X)]m = f(Xm)(mod Xr − 1, p) (23)

For introspectiveness two rules are defined:
“If m and m′ are introspective numbers for f(X) then so is m ∗m′”
“If m is introspective for f(X) and g(X) then it is also introspective for f(X) ∗ g(X)” (both
[1])

The introspective equation for m and f(X) is:

[f(X)]m = f(Xm)(mod Xr − 1, p)

⇔[f(X)]m∗m
′

= [f(Xm)]m
′
(mod Xr − 1, p)

(24)

by replacing X with Xm in the introspective equation for m′ we get:

[f(Xm)]m
′

= f(Xm∗m′
)(mod Xm∗r − 1, p) (25)

and since Xr − 1 divides Xm∗r − 1:

[f(Xm)]m
′

= f(Xm∗m′
)(mod Xr − 1, p) (26)

Putting the two equations together we get:

[f(X))]m∗m
′

= f(Xm∗m′
)(mod Xr − 1, p) (27)

proving the first rule.
The second rule is trivially shown since:

[f(X) ∗ g(X)]m = [f(X)]m ∗ [g(X)]m = f(Xm) ∗ g(Xm)(mod Xr − 1, p) (28)

Under the assumption that step 5 of the algorithm doesn’t output COMPOSITE we can deduct:

(X + a)n = Xn + a(mod Xr − 1, n) (29)

for 0 ≤ a ≤ `. Since p divides n, this implies (all following equations are valid for 0 ≤ a ≤ `):

(X + a)n = Xn + a(mod Xr − 1, p) (30)

Because of Equation (19) this also implies:

(X + a)p = Xp + a(mod Xr − 1, p) (31)

and
(X + a)

n
p = X

n
p + a(mod Xr − 1, p) (32)

These equations lead to the conclusion that both n
p and p are introspective for X + a with the

bounds for a being 0 ≤ a ≤ `.

9

With the defined properties of introspectiveness we can define two sets for the further proof; a
set I with:

I =

{(
n

p

)i
∗ pj

∣∣∣∣∣i, j ≥ 0

}
(33)

and a set P with:

P =

{∏̀
a=0

(X + a)ea

∣∣∣∣∣ea ≥ 0

}
(34)

and state for every polynomial Pi in P that every number in I is introspective to Pi. This can
be seen easily with the above rules for introspectiveness being transformed into (let (denote
introspectiveness):

m(f(X)→ mk (f(X) for any k ∈ N (35)

and
m(f(X)→ m(f(X)k for any k ∈ N (36)

Out of the above sets we construct two groups. The first group is G and contains the set of
all residues of numbers in I modulo r. We define the size of G as t. Because we know that
or(n) > log2n, t also has to be greater than log2n since otherwise it wouldn’t contain an element
which is 1(mod r).
For the second group we need to introduce cyclotomic polynomials. “The nth cyclotomic
polynomial, for any positive integer n, is the unique irreducible polynomial with integer co-
efficients that is a divisor of xn − 1 and is not a divisor of xk − 1 for any k < n.” (From:
https://en.wikipedia.org/wiki/Cyclotomic_polynomial)

This leads to the nth cyclotomic polynomial being:

Φn(x) =
∏

1≤k≤n with gcd(k,n)=1

(
x− e2iπ

k
n

)
(37)

AKS use the rth cyclotomic polynomial over Fp and call it Qr(X). Combined with the work
of [3] they also define h(X) being an irreducible factor of Qr(X) of degree or(p) and therefore
greater than one.

From this they define the second group G being “the set of all residues of polynomials in P
modulo h(X) and p”. [1]
G can be described by the elements X,X + 1, X + 2, · · · , X + ` over the Field F =

Fp[X]/(h(X)) and is therefore a subgroup of the multiplicative group of F .
Hendrik Lenstra Jr. has shown a lower bound on the size of G: [4]

|G| ≥
(
t+ `

t− 1

)
(38)

This lower bound is an improvement on a bound defined in an earlier version of AKS’s paper.
AKS continue to define an upper bound for the size of G for the case that n is not a power of
p:

|G| ≤ n
√
t if n is not a power of p (39)

To prove this we define a subset of I with:

Î =

{(
n

p

)i
∗ pj

∣∣∣∣∣0 ≤ i, j ≤ b√tc
}

(40)

10

https://en.wikipedia.org/wiki/Cyclotomic_polynomial

Assuming n is not a power of p this set has (b
√
t+1c)2 elements which is greater than t. Because

we defined t to be the size of G, we know there must be at least two numbers in Î equal modulo
r. We call these m1 and m2 with m1 < m2. With a f(X) ∈ P we can find that:

[f(X)]m1 = [f(X)]m2 in F (41)

This leads to the conclusion that f(X) ∈ G and f(X) is therefore a root of Q′(Y) = Y m1−Y m2

in F . Q′(Y) has at least |G| distinct roots in F since f(X) is in G. The degree of Q′(Y) is m1

and greater than |G|. Since m1 ≤
(
n
p ∗ p

)√t
≤ n

√
t, |G| ≤ nsqrtt. This proof was formulated by

[5] and sadly no further explained by AKS.
To now prove the algorithm being correct we still assume that step 6 outputs PRIME. We know
the lower bound of |G| and by replacing ` we can transform it:

|G| ≥
(
t+ `

t− 1

)
since t > log2n→ t >

√
t log n

≥
(

(b
√
t log nc+ 1) + `

b
√
t log nc

)
=

(
`+ b

√
t log nc+ 1

b
√
t log nc

)
since ` = b

√
φ(r) log nc and φ(r) ≥ t and therefore ` ≥ b

√
t log nc

≥
(

2b
√
t log nc+ 1

b
√
t log nc

)
this step is a little more complicated and will be discussed below

> 2b
√
t lognc+1

≥ n
√
t

(42)

The inbetween step can be explained with some knowledge about binomial coefficients. Follow-
ing we’ll replace b

√
t log nc with x leading to:(

2x+ 1

x

)
(43)

Since we know that 1 ≤ x ≤ 2x+ 1 we also know that:(
2x+ 1

x

)
=

(
2x

x

)
+

(
2x

x− 1

)
(44)

Since
(
n
k

)
≥ n

k
k: (

2x+ 1

x

)
≥ 2x +

(
2x

x− 1

)
≥ 2x +

2xxx

(x− 1)x

> 2x+1

(45)

11

To show that 2x + 2xxx

(x−1)x > 2x+1:

2x+
2xxx

(x− 1)x
> 2x+1

⇔2x+
2xxx

(x− 1)x
> 2 ∗ 2x

⇔ 2xxx

(x− 1)x
> 2x

⇔ 2xxx > 2x ∗ (x− 1)x

⇔ xx > (x− 1)x

⇔ x > x− 1

⇔ 1 > 0

(46)

These steps are all possible since x = b
√
t log nc → x ≥ 1.

With this we’ve shown that |G| > n
√
t (take into account the single greater-relation that is not

a greater-equals-relation in the above transformation). Since we’ve shown before that |G| ≤ n
√
t

if n is not a power of p, n has to be a power of p for this to not contradict. If this were the
case, the algorithm would’ve already returned COMPOSITE in step 1 and therefore n = p and
we’ve shown that n is indeed prime.

Time complexity
The first step takes asymptotic time O∼(log3n). Calculation for this can be found in the work
of [6].

In step 2 we need to test values for k ≤ log2n for any r which involves at most O(log2n)
multiplications modulo r equaling a time of O∼(log2n log r). Since we need to try a maximum
of log5n r’s the total time of step 2 evaluates to O∼(log7n). Note that the ‘log r’-term is omitted
out of insignificance.

The third step of the algorithm computes the greatest common divisors of r numbers. Ac-
cording to [6] each gcd-computation takes O(log n) and because of the upper bound of r step 3
leads to a worst case time of O(log6n).

Step 4 can be done in O(log n) since it’s just one comparison.
The for-loop in step 5 has at most b

√
φ(r)log nc iterations and in each iteration we have

to perform O(log n) multiplications of polynomials of degree r with coefficients of size O(log n)
leading to a total time complexity of O∼(r∗log2n) for each iteration. Multiplied with the amount

of iterations we result in a time complexity of O∼(r ∗
√
φrlog3n) being equal to O∼(r

3
2 ∗ log3n)

and, taking the upper bound of r into account, O∼(log
21
2 n). This time supercedes the time of

all other steps and therefore notates the time complexity of the whole algorithm.
There are multiple proposed conjectures that would lead to a time complexity of down to
O∼(log6n) but none of them have been proven yet. These usually rely on finding a lower upper
bound for r.

12

References

[1] M. Agrawal, N. Kayal, N. Saxena, “PRIMES is in P.” http://annals.math.princeton.

edu/wp-content/uploads/annals-v160-n2-p12.pdf. [Accessed: 02.2019].

[2] M. Nair, “On Chebyshev-type inequalities for primes.” Amer. Math. Monthly 89(1982),
126–129.

[3] R. Lidl and H. Niederreiter, “Introduction to Finite Fields and their Applications.” Cam-
bridge Univ. Press, Cambridge, 1986.

[4] H. W. Lenstra, Jr., “Primality testing with cyclotomic rings.” http://cr.yp.to/papers.

html#aks. unpublished.

[5] A. Kalai, A. Sahai, M. Sudan, “Notes on primality test and analysis of AKS.” Private
communication with the authors of AKS.

[6] J. von zur Gathen and J. Gerhard, “Modern Computer Algebra.” Cambridge Univ. Press,
Cambridge, 1999.

13

http://annals.math.princeton.edu/wp-content/uploads/annals-v160-n2-p12.pdf
http://annals.math.princeton.edu/wp-content/uploads/annals-v160-n2-p12.pdf
http://cr.yp.to/papers.html#aks
http://cr.yp.to/papers.html#aks

	Abstract
	Definition of Primality
	Complexity Classes and Notation
	Trivial Tests
	Wilson's Theorem
	Trial Division

	Fast deterministic Tests
	Preparation: Fermat's Little Theorem
	Agrawal-Kayal-Saxena Test

	The Algorithm

