Applications of Artificial Intelligence

Sebastian Iwanowski FH Wedel

Chapter 4: Knowledge-Based Systems

4.3: Model-Based Reasoning

Goal:

- fast knowledge acquisition
- exact and provable solution of problem solver

Challenge:

• reasonable response time of problem solver at run time

Input to knowledge base:

- system model: hierarchical structure of the system (+ how the components are connected)
- component models

Structure of knowledge base:

- constraint network (assembled automatically)
- structured by:
 - assigning constraints to components and ports
 - assigning variables to components and ports

Base functionality: Conflict driven search

Base functionality: Finding consistent assumptions

GDE 1987: The prototype for model-based diagnosis

Problem:

,brute-force' Simulation of *all* fault assumptions combinatorically not feasible

Idea: General Diagnostic Engine GDE, deKleer & Williams 1987

- intelligent search in the space of all fault assumptions
- uses inconsistent assumptions for pruning the search space
- base principle: conflict-driven search

GDE - Example

component models

- multiplier: mode=ok \Rightarrow out = in₁ * in₂
- adder:

measurements: $g = 10 \land h = 12$

mode=ok \Rightarrow out = in₁ + in₂ a = 10 \land b = 12

GDE - Example

Modeling a simple electric circuit in a first shot

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 9

Model-Based Diagnosis: Base functionality Models of electric components: **Battery:** plus minus minus, plus \in { ground, supply voltage } value ranges: $ok \Rightarrow (minus = ground)$ rules: $ok \Rightarrow (plus = supply voltage)$ Wire: a2 a1 value ranges: a1, a2 \in {ground, supply voltage } rules: ok \land (a1 = ground) \Rightarrow (a2 = ground) **ok** \land (a1 = supply voltage) \Rightarrow (a2 = supply voltage) ok ∧ (a2 = ground) \Rightarrow (a1 = ground) **ok** \land (a2 = supply voltage) \Rightarrow (a1 = supply voltage)

Models of electric components:

value ranges:

```
a1, a2 \in { ground, supply voltage } z \in { lit, dark }
```

rules:

ok \land (a1 = supply voltage) \land (a2 = ground) \Rightarrow (z = lit) ok \land (a2 = supply voltage) \land (a1 = ground) \Rightarrow (z = lit) ok \land (a1 = supply voltage) \land (a2 = supply voltage) \Rightarrow (z = dark) ok \land (a1 = ground) \land (a2 = ground) \Rightarrow (z = dark)

ok
$$\land$$
 (a1 = ground) \land (z = lit) \Rightarrow (a2 = supply voltage)
ok \land (a1 = supply voltage) \land (z = lit) \Rightarrow (a2 = ground)
ok \land (a1 = ground) \land (z = dark) \Rightarrow (a2 = ground)
ok \land (a1 = supply voltage) \land (z = dark) \Rightarrow (a2 = supply voltage)

ok
$$\land$$
 (a2 = ground) \land (z = lit) \Rightarrow (a1 = supply voltage)
ok \land (a2 = supply voltage) \land (z = lit) \Rightarrow (a1 = ground)
ok \land (a2 = ground) \land (z = dark) \Rightarrow (a1 = ground)
ok \land (a2 = supply voltage) \land (z = dark) \Rightarrow (a1 = supply voltage

Composing the system model from the component models:

Values at connecting ports must be the same from both sides.

In case of contradiction: Conflict between the behavioural modes predicting the resp. values Diagnoses are sets of behavioural modes not containing any conflict.

Example why the adder/multiplier example does not reveal all difficulties for practice:

Observation:

L1, L2 are not lit, L3 is lit

GDE diagnoses:

1. (B ok, L1 faulty, L2 faulty, L3 ok)

2. (B faulty, L1 ok, L2 ok, L3 faulty) ???

3. (B faulty, L1 ok, L2 ok, L3 ok)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 13

<u>???</u>

Conclusion from this modeling:

There is no logic contradiction to the following diagnosis:

2. (B faulty, L1 ok, L2 ok, L3 faulty)

Reason:

L3 may be lit in fault mode even if there is no voltage difference.

Incomplete knowledge base !

Even worse:

If a behavioural rule is only evaluated when its antecedents assume actual values, then no contradiction can be found to the following diagnosis:

3. (B faulty, L1 ok, L2 ok, L3 ok)

Reason:

There is no voltage value computed anywhere in the system.

Incomplete inference ability of the problem solver !

Model-Based Diagnosis: Base functionality Additional rules for the exclusion of diagnoses 2/3: **Battery:** plus minus faulty \Rightarrow (minus = ground) Lamp: a2 a1 Ζ

faulty \land (a1 = supply voltage) \land (a2 = supply voltage) \Rightarrow (z = dark) faulty \land (a1 = ground) \land (a2 = ground) \Rightarrow (z = dark)

There must be models for faulty behaviour, too, in order to exclude diagnoses that are physically impossible.

Model-Based Diagnosis: Extended functionality

Base functionality:

Input:

- Setting certain control inputs
- Observing values depending on this setting

Output:

- Several diagnoses of the following kind:
 - Jeach diagnosis assigns a behavioural mode to each component: ok or a defined fault mode
 - The rules of all behavioural modes assigned agree with all set and observed values.

What does the user need ?

Input: see above

Output: • A unique instruction how to repair which component

Model-Based Diagnosis: Extended functionality

Extended functionality:

1) Suggestion of setting certain control inputs

• Setting certain values at certain places in the system

(such that the observations to be expected differ such that the diagnoses valid so far may be distinguished best)

2) Suggestion of observation points

• Selecting observation points

(such that the observations to be expected differ such that the diagnoses valid so far may be distinguished best)

Requirement for the modeling:

- Definition of test points
- Definition of test values to be set at the test points
- Definition of observation points to be measured

Test
Control actions

Observations

Modeling the components in a proper way

Behavioural modes

- modes of the component to be searched for in the diagnostic process
- Domain of definition must be finite (normall less than 10 values)

Variables

- containing values
- The variable values are used in the constraints.
- The constraints compute new values for other variables.

Ports

 containing variables to be identified at the connections to adjacent components

Constraints

- set of behavioural rules connecting the variables of the same component
- Normally, a constraint is only valid under the assumption of a certain behavioural mode.

Control actions

- variables and values to be set
- measure of accessibility and the difficulty to set certain values.

Distinguish internal variables from port variables !

Observations

- variables
- measure for accessibility

Modeling a simple electric circuit in a proper way

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 19

Modeling a simple electric circuit

Battery

fault modes:

discharged contact gap at + contact gap at loose contact at + loose contact at corroded

ports: +, -

control actions:

observations:

: open connector at + open connector at close connector at +

close connector at -

inspect connectors

measure voltage at +

measure voltage at -

constraints:

cf. slides 10, 15

Modeling a simple electric circuit

<u>Lamp</u>	A a_1	fault modes:	blown
			lamp is not inserted
porte:	a ₂		loose contact
points. a_1, a_2	2		corroded
internal variables: z		control actions:	remove lamp
constraints:			insert lamp
cf. slide	es 11, 15	observations:	inspect lamp
a ₁	a ₂		
<u>Wire</u> •	•	• fault modes:	broken
			shorted to ground
			shorted to voltage
ports: _{a1} , a	2		corroded
constraints:		control actions:	
cf. slide	es 10	observations:	measure voltage at a_1
			measure voltage at a_2
			inspect wire

Modeling a simple electric circuit

Junction (3)

ports: a_1 , a_2 , a_3

fault modes:

constraints:

exercise

(related to wires)

contact gap at a_1 contact gap at a_2 contact gap at a_3 loose contact at a_1 loose contact at a_2 loose contact at a_3

control actions: close contact at a₁

close contact at a_2

close contact at a₃

open contact at a_1

open contact at a_2

open contact at a₃

observations: inspect contacts

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 22