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1. Introduction 
Simpson’s Paradox seems to hunt statisticians for more than half a century. To this very day 

it is an extraordinary example for how erroneous conclusions drawn from a statistical study 

can be if not done correctly. It demonstrates how important it is to evaluate data carefully, 

with the appropriate knowledge and quality of education. 

Even today some statisticians think that this paradox is unresolved, for example the authors 

of the article “Das Beunruhigende Paradox von Simpson” published in the German scientific 

journal “Spektrum der Wissenschaft”1. Although this journal is considered to be highly 

reliable the authors claim that so far no appropriate solution has been found on how to 

resolve the occurrences of this paradox. However, the following chapters of this paper will 

show that this is not true.  

1.1 History of Simpson’s 
Simpson’s paradox has been mentioned as early as 1899 by Karl Pearson, a British 

statistician who found a correlation between length and breadth of the human skull2. 

However, when he separated the data according to gender the correlation vanished. In 

1903, statistician George Udny Yule mentioned similar effects when studying and discussing 

correlation and association3.  In 1951 Edward H. Simpson was the first to address this 

matter in a technical paper4. Several years later mathematician Colin R. Blyth gave the 

paradox Simpson’s name. Today, there exist multiple names for it, e.g. the Yule-Simpson-

Effect or the Reversal-Paradox. 

1.2 What is Simpson’s paradox? 
Simpson’s Paradox is a phenomenon in Statistics in which a trend appears in different 

groups of data but disappears or reverses when the groups are combined.  

The following example illustrates the paradox by using two different sets of cards5:  

Two separate piles are presented, one consisting of the first deck of cards the other of the 

second. The goal is to choose the set with the higher overall chance of getting a red card. 

 

 

 

 

                                                           
1 (cf. Delahaye 2017) 
2 (cf. Salkind 2010) 
3 (For further information see the following paper:  Aldrich John 1995, Correlations Genuine and 

Spurious in Pearson and Yule) 
4 (To read the original paper see: Simpson E.H. 1951, The Interpretation of Interaction in Contingency 
Tables) 
5 (corresponding video: SciShow 2017, Statistical Paradoxes with MinutePhysics – SciShow Talk 
Show) 
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The first two piles look like this: 

Pile I:       Pile II: 

0% chance of getting a red card    1/4 = 25% chance of getting a red 

card 

    

Figure 1: Pile I first example    Figure 2: Pile II second example 

Clearly the decision would be made in favour of the second pile since the chances of getting 

a red card in pile I are 0%.  

Now consider the second example: 

Pile I:       Pile II: 

3/4 = 75% chance of getting a red card   1/1 = 100% chance of getting a red 

card 

    

Figure 3: Pile I second example     Figure 4: Pile II second example 

Again, the choice would be made in favour of pile II since the chance of getting a red card is 

100%. 

Now consider the combined piles: 

Pile I (combined):  

3/5 = 60% chance of getting a red card 

     

Figure 5: pile I combined 
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Pile II (combined): chance of getting a red card 

2/5 = 40% 

   

 

Figure 6: pile II combined 

Taking into account that pile II has been both times the better choice, it should seem only 

reasonable that pile II will yield the better results. However, as can be seen from the 

graphic when the two piles are combined pile I has a better chance of getting a red card 

than pile II. 

2 Famous Examples of Simpson’s paradox: 
Throughout the last decades, Simpson’s paradox has caused quite a couple of headlines. 

This chapter will present a few of the most famous occasions of Simpson’s  

paradox. 

2.1 Berkely University Admissions6 
In 1973 the University of California Berkely was sued for sex discrimination. The reason for 

this law suit was a study that showed that the average acceptance rate of females into the 

University was about 9% lower (35%) than the one of males (44%). 

 During the case, each department was investigated separately to determine the magnitude 

of discrimination. Surprisingly, the investigation established that each department isolated 

showed no signs of discrimination against females but moreover a slight tendency against 

males. It turned out that most women tended to apply to departments where the overall 

acceptance rate was very low due to a lot of applicants (departments C to F see figure 7). 

On the other hand, men tended to apply to departments with a relatively high overall 

acceptance rate (Like departments A and B).  Considering this, it only appeared like women 

were discriminated against. Regardless of gender the general chance of getting into a 

department, that is more favoured by students, is lower than the chance of getting into a 

less popular department.  

 

 

 

                                                           
6 (Cf. Bickel P.J. 1975, Sex Bias in Graduate Admissions) 
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Figure 7: chart illustrating the distribution of student applications for the six major departments at Berkely 

2.2 Mortality Rates for Smokers VS Non-Smokers7 
 In the early 1970s a study showed that the average mortality rate of a non-smoker (31.4%) 

is 7.5% higher than that of a smoker (23.9%). This suggested that smoking benefits life 

expectancy.  

Splitting the data per age groups showed a reverse trend. In each age group the mortality 

rate of non-smokers was significantly less than that of smokers.  

  

Figure 8: Aggregated mortality rates   Figure 9: Mortality rates split per age 

The reason for the seemingly higher mortality rate of non-smokers was the different age 

distribution between the two groups. Non-smokers tend to live longer than smokers, 

therefore the percentage of older people was significantly higher in the non-smoking 

group. Because older people die more often it appeared as if non-smokers had a higher 

mortality rate than smokers. 

                                                           
7 (Cf. Schmarzo Bill 2014, Beware Simpson’s Paradox) 
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Figure 10: Age distribution of smokers and non-smokers 

2.3 Kidney Stone Treatment8 
In 1986 a medical study suggested that of two different kidney stone treatments, for 

simplification called A and B, treatment B (83%) was to be preferred to use. It had a 5% 

higher overall success rate than treatment A (78%). 

However, when the data was separated according to the size of the kidney stones it 

showed treatment A was more effective in both groups.  

This was since treatment B had been usually used on small kidney stones where the overall 

success rate is higher than when treating large kidney stones.  

 

Figure 11: Distribution of treatment A and B regarding the size of the kidney stones. 

 

 

 

 

 

                                                           
8 (Cf. Julious 1994, Confounding and Simpson’s Paradox; Wikipedia, Simpson’s paradox) 
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3. Graphical Visualization of Simpson’s Paradox9 
To get a better understanding of the effect it is helpful to look at the paradox depicted with 

vectors since in this case it is more tangible and therefore less paradoxical. The chart below 

shows six different vectors divided into three subgroups each paired up according to their 

number, blue vs red. The dimension in which these vectors are compared is their slope. 

 

 

 

 

Figure 12: Six vectors, three red and three blue 

red number one + red number two = dashed red with sign + 
blue number one + red number two = dashed blue with sign + 

 

Considering the two vectors at the bottom (titled with the number one) the red vector has 

a higher slope. Same holds for the two vectors at the top (titled with number two), the red 

vector has the higher slope. 

However, when the two blue and the two red vectors are combined yielding the dashed red 

and the dashed blue vector the resultant blue vector has a greater slope than the resultant 

red one. This illustrates how a result can dominate in two separate subgroups (red vectors 

one & two > blue vectors one & two) but be reversed when the two are combined (blue 

dashed vector > red dashed vector). 

4. How to resolve Simpson’s paradox? 
Considering the presented examples, the answer as to which set of data holds the correct 

interpretation  has always been provided and explained by a logical explanation. 

Unfortunately, not every case of this paradox can be solved and understood that easily. 

Two main questions appear when dealing with Simpson’s: 

 

 

                                                           
9 (Cf. Wikipedia, Simpson’s paradox) 
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1. How to make the correct decision? 

If confronted with two different conclusions depending on which set of data is 

considered (aggregated or disaggregated) which one should be chosen and what is 

the justification for that? 

 

2. How do we know if Simpsons Paradox has occurred?  

The presence of Simpson’s paradox is not always evident since it depends on the 

criteria which we condition upon if a case of the paradox is discovered. If for 

example the study regarding the gender bias at Berkely had never chosen to 

investigate each department separately therefore splitting up the data a reverse 

trend would have never been detected. Choosing reasonable criteria for grouping 

your data is an art which is crucial to the validity of a study. However, once the set 

of pertinent criteria is chosen there are ways to determine if a case of Simpson’s 

paradox appears or not. 

4.1 How to make the correct decision? 
When two different conclusions are provided, depending on which kind of partitions are 

made, the variables involved need to be modelled in a causal diagram. 

To decide which set of data holds the correct answer the following approach has been 

developed and introduced by Judea Pearl, professor for computer science and statistics at 

the University of California Los Angeles. Pearl uses the concept of causality and causal 

diagrams to explain how to resolve a case of Simpson’s Paradox10.  

4.1.1 An introduction to causality 
A causal diagram consists of two things11: nodes and edges. Each node represents a variable 

that can take on a value from a finite set of values, e.g. rain: (true, false), grass (wet, dry). 

Every node in the diagram must be connected to at least one other node by an edge. Each 

edge has a distinct direction representing the causal relationship between two nodes, e.g. 

rain causes the grass to become wet.  

 

Figure 13: simple causal diagram 

When saying, rain causes grass to become wet we have to define the kind of causation used 

in this term. 

Causality differentiates between two kinds of relationships12: 

 

Deterministic causation: If A causes B, than A must always be followed by B. 

                                                           
10 (Cf. Pearl 1995, Causal diagrams for empirical research) 
11 (Cf. Yudkowsky 2012, Causal Diagrams and Causal Models) 
12 (Cf. Wright 2008, Types of Causality) 
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For Example: Applying heat to water will cause the water to become warmer and 

eventually it will start boiling. 

And probabilistic causation: A probabilistically causes B if A’s occurrence increases the 

probability of B’s occurrence. 

For Example: Smoking increases the risk of lung cancer. However, smoking will not 

cause lung cancer with a 100% certainty since there are people who smoke all their 

life but have no lung cancer. 

In our first example the relationship between rain and grass the type of causality can safely 

be titled as deterministic since all other things being equal rain will always cause the grass 

to become wet. 

However, for dealing with Simpson’s paradox probabilistic causation will have to be applied 

since the deterministic approach is very hard to verify because a 100% certainty is required. 

4.1.2 Causation and Correlation13 
A very important aspect to keep in mind when dealing with causation is the difference 

between correlation and causation. Although at first glance especially probabilistic 

causation may seem to have no difference with correlation it is crucial to understand that 

the two are fundamentally different. 

A correlation between variables may be based on a causal relationship but this does not 

have to be the case.  

Correlation does not imply causation.  

Imagine the following scenario14: 

 A Barometer hanging in a house close by the shore is used to indicate whether a storm is 

about to come. If the level of Mercury in the Barometer starts to drop rapidly, chances are 

a storm is about to come up soon. This is a correlational relationship since observing the 

Barometer tells you something about the probability of the storm.  

To test whether this is a causal relationship, try to actively manipulate the level of mercury 

in the Barometer, e.g. by applying heat or cooling, and see if the chances of a storm change 

accordingly. Reason tells us they will not. Hence, this is a correlation but the Barometer 

does not cause the storm. 

By considering the air pressure, we obtain a causal relationship. If we could change the air 

pressure in a particular region the chances of a storm would change accordingly. 

This means that air pressure influences both, storm and barometer, in a causal way 

whereas the relation between the barometer and the storm is of a non-causal type. 

 

                                                           
13 (Cf. Hitchcock 2010, Probabilistic Causation) 
14 (Cf. Wikipedia, Probabilistic Causation) 
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Correlation     Causation 

Figure 14: Example for correlation   Figure 15: Example for causation 

The essential difference comes from obtaining knowledge in two different ways. In the first 

case knowledge is gained by observation (correlation) whereas in the second case 

knowledge is gained by active interference (causation). 

4.1.3 Pearls Causality15 
To express the difference between merely observing a dependence contrary to actively 

testing it Judea Pearl invented a new form of algebra specifically suited for the purpose of 

operating with causality. This algebra uses the do-operator which explicitly states that a 

certain probability is observed when externally intervening16.  

In these terms: 

P(storm | do (air pressure falling))  describes the probability of a storm coming when

      the air pressure is actively lowered.  

However the probability of: 

P(storm | do(Barometer falling))  will yield to 0%  

 

whereas the standard conditional probability: 

P(storm | Barometer falling)   will give a value greater 0%. 

Using this new calculus with its new stated laws, it is possible to model a case of Simpson’s 

paradox and solve the equations respectively. The result will tell in which group of data the 

correct answer presides. For further information on this confer to Pearl’s book:  

“Causality, Models, reasoning and Inference”17. 

This paper will not elaborate on this topic any further since using causal diagrams solves 

Simpson’s paradox in a much easier way. 

                                                           
15 (For more detailed information confer to: Pearl 2009, Causality, Models, Reasoning and Inference) 
16 (Cf. Pearl 2012, The Do-Calculus Revisited) 
17 See 15 
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4.1.4 Making the correct decision 
Pearl uses this technique to demonstrate graphically how a case of Simpson’s can be 

modelled and solved by applying a certain criterion to the resulting diagram18. 

The criterion used derives itself from two separate criterions which are named: 

1. D-separation criterion 

2. Back-door criterion 

This paper will not elaborate on these two any further since there is sufficient other work 

that does so18. Instead they will be simplified in the following to the necessary criterion for 

determining in which set of data the correct answer lies. 

When trying to identify the causal influence of a cause X on an effect Y consider the 

following: 

Every path (sequence of nodes and edges where the direction is irrelevant!) 

that contains an arrow into the cause X needs to be inspected.  

If this path contains a chain:   I -> m -> j  

or a fork:     I <- m -> j 

than the node in the middle of the chain (m) or the source of the fork (m) needs to be 

conditioned on. 

It is important to realise that a chain can occur in any direction as long as both edges go the 

same way, when applying this criterion.  

Furthermore, if the path contains an inverted fork (called a collider): I -> m <- j 

than the node in the middle (m) and all its descendant nodes are not allowed to be 

conditioned on. 

To illustrate this, four examples are given in the following. In each example the question 

arises whether a decision should be based on data separated according to a criterion Z. 

 

 

Figure 16:causal diagrams for Simpson's 

Node X represents one of two treatments which have a causal effect on recovery Y when 

given to patients. In Example a) the doctor has two different studies, one suggesting that if 

he splits up his patients according to gender treatment A is to be overall preferred.  

                                                           
18 (Cf. Pearl 2013, Understanding Simpson’s Paradox) 



 
13 

 

The other one implying that when not considering the gender of the patient, treatment B is 

the better choice. The corresponding causal diagram shows that when applying the 

criterion, the correct answer is provided by the disaggregated data. Since X <- Z -> Y is a 

path with an arrow into the cause X and the path contains a fork, Z should be conditioned 

on. 

Example b) suggests the same scenario although this time the patients are divided with 

regards to their blood pressure. If the blood pressure is taken into account, both groups 

(low and high pressure) suggest another treatment as if not considering blood pressure at 

all. Looking at the corresponding causal diagram shows that the correct answer is provided 

by the aggregated data. Thus, blood pressure should not be examined. There is no path 

with an arrow into the cause X, therefore no conditioning can be done. 

Example c) presents multiple nodes influencing each other. Applying the criterion there is a 

path with an arrow into the cause (X <- L1 -> Z <- L2). However, it is forbidden to condition 

on Z or any of its descendants since Z is a collider. The edges from L1 and L2 collide at Z.  

Example d) displays a case with a typical chain. There is a path (X <- L1 -> Z -> Y) with an 

arrow into the cause X that contains a chain with the node Z in the middle. Therefore, Z 

should be conditioned on. Another option would be to condition on L1 since it forms a fork 

with X and Z. This is equally possible and depends on whether all the information needed is 

available. For example, if the data does not provide enough information about criterion Z, 

same samples might lack this information, criterion L1 could be the better choice. Both 

ways will yield the same correct result. 

Summarizing this approach, the harder task is to model a specific case precisely in a certain 

diagram and not to solve the paradox when given such a diagram. 

4.2 How to detect a case of Simpson’s Paradox 
The second question is: How do we know if our data contains a case of Simpson’s paradox? 

When choosing the relevant criteria for a certain study it is important to be very careful and 

possess thorough knowledge about the task at hand. Otherwise Simpson’s Paradox shows, 

that  each result can be intentionally reversed simply by splitting the examined data 

according to some deliberate criterion. However, even if all criteria picked have their 

validation and significance, a certain sub-division can yield a case of reversal.  

To be aware of such a case it is possible to apply the same approach used in the previous 

chapter. The theory of graphical models can tell for a specific causal diagram whether a 

case of Simpson’s paradox is possible or not. For further information see “Graphical 

Models” published in 1996 by Steffen L. Lauritzen. 

In the next chapter an algorithm that can be used for computing if a case of Simpson’s 

paradox exists in the given data once the relevant criteria are established will be presented. 
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The algorithm has its roots in data mining since it operates on a flat data structure meaning 

it uses only a single table as a data source. It has been presented first by Alex A. Freitas in 

199819. 

4.2.1 Algorithm for detecting Simpson’s paradox in data 

mining20 
Input: The algorithms input consists of a list LG of binary user-defined goal attributes and a 

set of obtained data presented in a flat data base (single table). 

Output: The algorithms output consists of all instances of Simpson’s paradox found 

meaning it will provide a table of three columns:  

relevant goal attribute G, first partition attribute A1, second partition attribute A2 

filled with the corresponding data that lead to the occurrence of Simpson’s paradox. 

Restrictions:  Every attribute in LG has to be binary. 

  Every attribute in L1 has to be binary. 

  Every attribute in L2 has to be categorical. 

  No attribute in LG can be put in L1 or L2. 

Variables:  LG: list of user defined binary goal attributes 

  L1: list of 1stPartAtt 

  L2: list of 2ndPartAtt 

  G1, G2: specific goal attribute representing the current state in population

  1 and 2 

  Gij: specific goal attribute representing current state in a subpopulation 

  i=1stPartAtt 

   j= 2ndPartAtt 

  Pr(Gij): probability of the occurrence of a certain goal attribute in a 

   subpopulation devided according to 1stPartAtt i and 2ndPartAtt j. 

  Pr(G1= ‘yes’ | A1=1): probability of the occurrence of a certain goal  

  attribute in population one under the condition that the current 1stPartAtt

  A1 is equal to one. 

The following part elaborates on the algorithm by Freitas and provide an example to make 

its functionality clearer: 

 

1)  INPUT: list of binary user-defined goal attributes LG 

2)  BEGIN 

3) identify attributes that can be used as 1stPartAtt and put them in list L1 

4) identify attributes that can be used as 2ndPartAtt and put them in list L2 

5)     FOR EACH goal attribute G in LG 

6)  FOR EACH attribute A1 in L1 

7)   partition population into Pop1 and Pop2, according to values of A1 

                                                           
19 (Cf. Freitas 1998, On objective measures of rule surprisingness) 
20 (Cf. Freitas 2000, Discovering Surprising Patterns by Detecting Occurences of Simpson’s Paradox) 
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8)   Pr(G1) = Pr(G=„yes“|A1=1) 

9)   Pr(G2) = Pr(G=„yes“|A1=2) 

10)   FOR EACH attribute A2 in L2 such that A2 ≠ A1 

11)   FOR i=1,2 

12)       partition Popi into m new populations Popi1 … Popim, 

13)           according to the values of A2 

14)       FOR j=1,…,m 

15)            Pr(Gij) = Pr(G=„yes“|A1=i,A2=j) 

16)   IF (Pr(G1) > Pr(G2) AND Pr(G1j) ≤ Pr(G2j), j=1,…,m) 

17)       OR ( Pr(G1) < Pr(G2) AND Pr(G1j) ≥ Pr(G2j), j=1,…,m) 

18)               report the occurence of the paradox to the user 

Imagine the following scenario21: 

A patient comes to a doctor and has a certain disease. The doctor is informed about a study 

regarding this disease that yields the following table: 

 

Cured Not cured Succes rate

Medicine A 5 6 45.45%

Medicine B 4 5 44.44%  

Figure 17: Combined table doctor patient example 

According to this study the patient should be provided with the Medicine A.  

The corresponding data for this study looks like this: 

No. 
Med. 
type Cured Gender 

1 Med. A Yes M 

2 Med. A Yes F 

3 Med. A Yes F 

4 Med. A Yes F 

5 Med. A Yes F 

6 Med. A No M 

7 Med. A No M 

8 Med. A No M 

9 Med. A No F 

10 Med. A No F 
 

No. 
Med. 
type Cured Gender 

11 Med. A No F 

12 Med. B. Yes M 

13 Med. B. Yes M 

14 Med. B. Yes F 

15 Med. B. Yes F 

16 Med. B. No M 

17 Med. B. No M 

18 Med. B. No M 

19 Med. B. No M 

20 Med. B. No F 
 

 

Figure 18: Sample data for doctor patient example 

 

 

  

                                                           
21 (Cf. Delahaye 2017, Das Beunruhigende Paradoxon von Simpson) 
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Applying the presented algorithm would look like this (the line numbers of the algorithm 

will be used to indicate at which step which calculations are made): 

Note: For this example, we will only inspect the case L1 = Medicine Type and L2= Gender 

since it demonstrates how the detection works. The other case would be run by the 

algorithm as well 

1) LG = {Cured (Yes, No)} 

3) L1 = { Medicine Type (A, B) , Gender (M, F) } 

4) L2 = { Gender (M, F), Medicine Type (A, B)  } 

5) G = Cured 

6) A1 = Medicine Type 

7) Pr(CuredA) = Pr(Cured = “yes” | Medicine Type = A) 

8) Pr(CuredB) = Pr(Cured = “yes” | Medicine Type = B) 

9) A2 = Gender 

11) FOR I = A,B 

12) PopI =  PopIM  & PopIF 

14) FOR J = M,F 

15) Pr (CuredIJ) = Pr(Cured = “yes” | Medicine Type = I, Gender = J) 

16) IF (Pr(CuredA) > Pr(CuredB) AND Pr(CuredAJ) ≤ Pr(CuredBJ), J = M,F) 

17) OR (Pr(CuredA) < Pr (CuredB) AND Pr(CuredAJ) ≥ Pr(CuredBJ), 

  J=M,F) 

Running through these steps will yield the following tables: 

Gender: M Cured Not cured Succes rate

Medicine A 1 3 25%

Medicine B 2 4 33%       

Gender: W Cured Not cured Succes rate

Medicine A 4 3 57%

Medicine B 2 1 66%  

Figure 19: Split table doctor patient example 

Executing the last two lines of code with this data looks like this: 

First iteration J = M: 

If 5/11 > 4/9 AND 1/4 ≤ 4/7  -> T 

OR 5/11 < 4/9 AND 1/4 ≥ 4/7 -> F 

Second iteration J = F: 

If 5/11 > 4/9 AND 2/6 ≤ 2/3  -> T 

OR 5/11 < 4/9 AND 2/6 ≥ 2/3 -> F 
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Since one of the two expressions evaluates to true, a case of Simpson’s paradox is detected 

and will be reported to the user in the following way: 

Simpson's 
Goal 
Attribute 1stPartAtt 2ndPartAtt 

Yes Cured Medicine Gender 
 

Figure 20: Sample result of detection algorithm 

This informs the doctor that for the data given there is a case of Simpson’s paradox to be 

aware of if sorting  the data first regarding the type of medicine and afterwards for gender. 

Using the method introduced in the previous chapter the doctor has now the means to 

determine which set of data needs to be considered. 

For everybody further interested in this method the paper published by Carem C. Fabris 

and Alex A. Freitas: “Discovering Surprising Instances of Simpson’s Paradox in Hierarchical 

Multidimensional Data”22 can be recommended. It introduces the reader to an altered 

version of this algorithm fit to be used in relational databases. Moreover, the authors add 

the possibility to rank the degree of surprisingness a single instance of Simpson’s paradox 

provides discussed in the next chapter. 

4.2.2 Magnitude of surprisingness23 
The magnitude of surprisingness M of a single scenario can be determined by measuring 

the degree to which the probability of the result reverses when splitting the data according 

to a criterion.  

Imagine the following scenario: The data in question recommends taking medicine A with a 

90% recovery rate versus medicine B with a 45% recovery rate. Once the data is split 

regarding gender medicine B is recommended with 90% versus medicine A with 45%. This 

would be considered a very strong case of Simpson’s paradox. But if the probabilities are A: 

45% and B: 44% and once split by gender A: 43%: B: 45%, than the magnitude is not very 

large. 

The formulas for calculating this degree are the following two: 

1) M = (M1 + M2) / 2 

Equation 1: Formula for magnitude of surprisingness 
 

2) M1 = 
|Pr(G1)−Pr(G2)|

max (Pr(G1),Pr(G2))
   M2 = ∑ (

|Pr(𝐺1𝑘)−Pr(𝐺2𝑘)|

max(𝑃𝑟𝐺1𝑘),Pr(𝐺2𝑘)) 
) / 𝑚 𝑚

𝑘=1  

Equation 2: Formula for magnitude of 1stPartition Equation 3: Formula for magnitude of 2ndPartition 

Formula 1) states that the overall magnitude is the arithmetic average of the two sub-

magnitudes of the different subsets. 

                                                           
22 (Cf. Freitas 2006, Discovering Surprising Instances of Simpson’s Paradox in Hierarchical 
Multidimensional Data) 
23 (Cf. Freitas 2000, Discovering Surprising Patterns by Detecting Occurences of Simpson’s Paradox) 
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Formula 2) explains how the sub-magnitudes are calculated. The first magnitude M1 

represents the data split by only the first attribute, in our case medicine. It is calculated by 

taking the difference between the two results, medicine A and B and dividing it by the 

greater of these two. The division provides relative values in the range zero to one. 

The second magnitude M2 represents the data split by the second partition attribute as 

well, in our case gender. It is calculated the same way as M1 with the difference that the 

sum of all partitions is taken and divided by their count m in the end. 

Note that the denominator of any term can be zero. In order to avoid division by zero, if 

any of those terms is zero, the whole term is simply considered zero. Meaning if both 

Pr(G1) and Pr(G2) are zero the whole term  
|Pr(G1)−Pr(G2)|

max (Pr(G1),Pr(G2))
 is considered zero. 

Applying this formula to the previous tables will yield the following results: 

 

 
 

M1 = 
|45.45%−44.44%|

max (45.45%,44.44%)
 = 

1

45
 ≈ 2.2 % 

  

 

Cured Not cured Succes rate

Medicine A 5 6 45.45%

Medicine B 4 5 44.44%  
 

 
 

M21 = ( 
|25%−33%|

max (25%,33%)
 ) = 

8

33
 ≈ 24,2 % 

 
 

M22 = ( 
|57%−66%|

max (57%,66%)
 ) =  

3

22
 ≈ 13.63 % 

 

 

 => M2 = ( 
8

33
 +  

3

22
  ) / 2 =  

25

132
 ≈ 18.93 % 

 

 

Gender: M Cured Not cured Succes rate

Medicine A 1 3 25%

Medicine B 2 4 33%  
 

Gender: W Cured Not cured Succes rate

Medicine A 4 3 57%

Medicine B 2 1 66%  
 

Figure 21: Doctor patient example 

This yields: 

 

M = 
1

45
 + 

25

132
 = 

419

1980
 ≈ 21.16 % 

Interpreting the results the following observations can be made:  

M1 is very low since medicine A surpasses medicine B only by very little. M2 on the other 

hand is larger since the difference between A and B is considerably greater. Therefore, the 

overall magnitude of 21.16 % can be seen as the result of a very narrow gap between A and 

B split by the first attribute thus making the occurrence not that significant and a bigger 

difference when split by the second attribute. The second time the difference is larger and 

makes the reversal therefore more important. 

  



 
19 

 

Examining the magnitude from another perspective shows the following: If a research 

concerning two different types of medicine shows, that A surpasses B by one percent when 

considering the aggregated data and B surpasses A by one percent when considering the 

disaggregated data the whole conclusion should be questioned. If the values are so close by 

each other the whole study might be set up in an insufficient way or the criteria in 

consideration are not fitting.  Either way the occurrence of the paradox is not the crucial 

component because the whole study seems not very significant. 

Using this additional value, all results found by the algorithm can be ranked and certain 

alerts can be set, so that reversals with a very low magnitude will not get as much attention 

as cases with a higher value. 

 

5. Conclusion 
Simpson’s paradox may still seem mysterious or unnatural whenever it is encountered. 

However, this is only a sensation that appears on first glance. The paradox itself always has 

a logical explanation as the examples in the beginning of this paper demonstrated. 

Using the tools and techniques presented in this paper it is safe to say that Simpson’s 

paradox is resolved, as it can be detected and solved using the tools and techniques 

presented in this papier. 

On one hand, it is possible to determine whether certain data holds a case of the paradox 

when grouped according to specific criteria. On the other hand, once found the paradox 

can be solved clearly determining which aggregation of data provides the correct answer.  

However, finding this explanation and understanding how the different variables influence 

each other is the task of a sophisticated statistician. This means that although the paradox 

does not pose a threat to any survey it is important to thoroughly choose the necessary 

criteria and to understand the relationships in which the criteria in consideration are in. 
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