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Search Strategies 
Relevance of search strategies for logic problems:

Relevance of search strategies for knowledge-based systems:

Search for a solution of the satisfiability problem

Relevance of search strategies for knowledge based systems:

KBS
P bl S lProblem Solver

Knowledge Base

The problem solver nearly always has to solve
a satisfiability problem for constraints of the knowledge base!

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 2

 All problem solvers search



Example for a knowledge-based search engine: 
PROLOGPROLOG

PROLOG is knowledge-based:

• Knowledge base
Facts and rules, dynamically extensible

• Inference engine („Problem Solver“)

deriving facts and rules automatically

• Dialog component

Input: Query
O t t / ifi ti f ifi ti li d i fOutput: yes / no, specification of unification applied in case of success,

write as a „side effect“

Yes: The predicate of the query can be concluded from knowledge base.
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Yes: The predicate of the query can be concluded from knowledge base.
No: The predicate of the query cannot be concluded from knowledge base.

No does not imply that it can be concluded that the predicate is false.



Application: Class Scheduling
Given finite sets Courses, Rooms, Time slots

Task: Generate an injective (one-to-one) function C → RxT
Strict Constraints (must be fulfilled in any case):
• Certain courses must not take place at the same time. 

• For some courses, certain time slots are not admitted.

• For some courses, certain rooms are not admitted.

Soft constraints (may be violated):
• Certain courses should not take place at some times.

C t i h ld t k l i l• Certain courses should take place successively.

• Certain courses should not take place on the same day.

Optimisation function:
• fewest violations of soft criteria

• fewest free periods for certain study programmes
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• fewest free periods for certain study programmes

• most uniform distribution on different days for ...



Application: Traveling Salesman Problem (TSP)
Given: Graph with node set V and weighted edges between the nodes

Task: Find a round trip traversing the graph edges reaching each node at least once.

Constraints:
• Only edges of the graph are to be used.

Optimisation function:
• Minimise the global edge costs !

Generalisation in logistic applications:
C t i tConstraints:
• Load and destribute goods obeying capacity restrictions ! 

• Consider time windows in which delivery may take place !y y p

Soft criteria (may be violated):
• Certain edges have to be avoided.
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g

• Certain time windows are unfavourable.



Application: Shortest Path Problem

Task: For two selected nodes S and T, find a path through the graph.

Given: Graph with node set V and weighted edges between the nodes

Constraints:
• Only edges of the graph are to be used.

Optimisation function:
• Minimise the global edge costs !

Generalisation in transport applications (public or individual):

Constraints:
• Edge costs depend on the time used.

• Travelors are subject to individual contraints that may value certain edges in 
a different way or make them even unusable.a d e e t ay o a e t e e e u usab e

Soft criteria (may be violated):
• Certain edges have to be avoided
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g

• Certain time windows are unfavourable



Constraint Satisfaction Problem (CSP)
Specification of a CSP:

• set of variables
• domains of definition
• constraints: relations between variables (strict or soft)

(nomally, equations or inequalities)

• optimisation criterionp
(normally, a real-valued function on the variables which has to be minimised or 
maximised )

valid solution:valid solution:
assignment of values to all variables such that all strict constraints are satisfied

optimal solution:optimal solution:
valid solution optimising the optimisation criterion

Constraint Solver are programmes which find a valid or even optimal
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Constraint Solver are programmes which find a valid or even optimal 
solution for a given CSP automatically. 



Traversing search graphs
1. search method: Find a global solution via partial solutions

• Node: describes state in search domain
• State: Assigning values to variables

Each state has got an evaluation
• Edge: transition of a state into a subsequent state

(usually feasible in one direction only)

Each state has got an evaluation.

• Initial node: initial state

• Subsequent state: Assign a value to a new variable
keeping the values for the already assigned variables

• Initial node: initial state
(is always unique)

• Initial node: No variable has got a value.

• Final node: final state wanted (problem solution)
(several ones are admissible)
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• Final node: All specified variables have got admissible values.



Traversing search graphs

Different search goals are possible:

1) Find some solution or detect that there is none.

2) Find further solutions or detect that there are none.

3) Find all solutions

4) Find an optimal solution or at least a rather good one.

3) Find all solutions.

Different search strategies differ in:

• Expansion of a node: Compute all subsequent resp. adjacent nodes

Which node has to be expanded next?

• Search graph is a search tree
(makes the path from initial node to each final node unique)

Special case:
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(makes the path from initial node to each final node unique)



Example for search trees in CSP

1) (2 < x < 4)

Constraint system: Domain of definition 
for valid solutions:

Optimisation 
criterion:

) ( )
2) (0 < y < 6)
3) (x + y > 7)
4) (x · y < 10,5)

x,y ∈ Q,
at most k positions after the decimal point

Minimise |y – x|

Search tree:

• Each node has got fixed x and y values nodes may be valid or not valid for each nodeEach node has got fixed  x and y values, nodes may be valid or not valid, for each node 
there is a unique optimal value.

• In level i, each x value has got i entries after the decimal point,
the y value is minimum according constraint 3)the y value is minimum according constraint 3).

Expansion strategies:
• Only valid nodes may be expanded.

• The rightmost valid node on the next level is expanded.
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• ...



Example for search trees in CSP

1) (2 < x < 4)

Constraint system: Domain of definition 
for valid solutions:

Optimisation 
criterion:

) ( )
2) (0 < y < 6)
3) (x + y > 7)
4) (x · y < 10,5)

x,y ∈ Q,
at most k positions after the decimal point

Minimise |y – x|

for bounded k:
• finite search space

for unbounded k:

• infinite search space
• several valid solutions

• always 1 optimal solution

infinite search space

• infinitely many valid solutions

• no optimal solution

FH Wedel Prof. Dr. Sebastian Iwanowski AAI3 slide 11



Uninformed Search Strategies

In general, only blind (uninformed) search is possible:
There is no information about good search search directions (the target is only recognised on 

arrival)

The most important search strategies:

1. breadth first search

2. depth first search2. depth first search

3. best first search
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Weitere Infos zum Thema Suchen: Seminarvortrag und Ausarbeitung von Sven Schmidt, SS 2005, Nr. 4
http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html



Uninformed Search Strategies
breadth first search:

problem size: depth of search tree

Exponential time and space
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for AI search procedures not relevant in most cases 



Uninformed Search Strategies
depth first search:

Exponential time

Linear space

problem size: depth of search tree
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p

The „normal case“ for standard AI procedures



Uninformed Search Strategies
bounded depth first search:

• Execute depth first search 
only up to limited search 
level.

• If not successful, increase 
limit for search level and 
start depth first search 
again.
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Uninformed Search Strategies
best first search:

• Additional information: Evaluation label for the nodes• Additional information: Evaluation label for the nodes.

• Expand the node with best evaluation first

• Search target: Find the best solution first (and the others later).

• Expand the node with best evaluation first.

 Mixture of depth first and breadth first searches

Exponential effort for time and space

In the worst case this is no better than breadth first search:
Problem size:p p

For good evaluation functions, the avarage case is much better!
Depth of search tree

Example: Special case „Shortest Path Problem“:

For special problems, even the worst case is much better:
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Dijkstra‘s algorithm (quadratic effort for time, linear for space)

Problem size: Number of nodes



Uninformed Search Strategies
Dijkstra‘s algorithm for weighted graphs
(special case of best first search)

Requirement for edge weights: All lengths have to be nonnegative

For all edges (u,v) there is a weight function:
length (u,v) := length of an edge from node u to node v

Requirement for edge weights: All lengths have to be nonnegative.

Algorithm for the search of a path from A to B having minimal global edge length:

• Put A into the set Done. Label A by distance(A) := 0.
Put all other nodes into the set YetToCompute.
Label all neighbors N of A by distance (N) := length (A,N) 
and all othe nodes by distance (V) := ∞.

• Repeat:
Choose node V from YetToCompute with minimum distance (V)

and shift V to the set Done.
Update all neighbors N of V that are still in YetToCompute:

distance (N) := min {distance (N),  distance (V) + length (V,N)}. 
til V B
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until V = B



Example for Dijkstra‘s algorithm

4 2

7

1 13

B C

5

13

4
Z

G
A

10 6 9

5

4
1

5

G

D5 5EF D

Shortest path from A to Z: A  F  E  Z (17 units)
Animation dieser Aufgabe und weitere Infos zum Algorithmus von Dijkstra:
Seminarvortrag und Ausarbeitung von Alex Prentki, WS 2004, Nr. 14
http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/WS2004/SeminarMC.html
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Example for Dijkstra‘s algorithm

4 2

7

1 13

B C

5

13

4
Z

G
A

10 6 9

5

4
1

5

G

D5 5EF D

Shortest path from G to Z: G  E  Z (13 units)

A(5,G)
B(2,G)

A(5,G)
B(2,G)

A(5,G)

Node (distance from G, direct predecessor):

C(1,G)
D(∞)
E(9,G)

D(∞)
E(9,G)

D(∞)
E(9,G)

D(∞)
E(9,G)

D(14,E)D(∞)
E(9,G)

    
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F(6,G)
Z(∞)

F(6,G)
Z(14,C)

F(6,G)
Z(14,C) Z(14,C) Z(13,E)Z(14,C)

F(6,G)



Informed (Heuristic) Search Strategies

Given the following kind of information for weighted graphs:

Distance function h(state) being an estimated measure for the real distance to the target

• easily computable

• but accurate enough not to lead the search procedure to the wrong target

h() provides a nonnegative value: The smaller the value, the closer the target

Application: „Hill climbing“

• Informed add-on to depth first search:

• Among the possible candidates, expand the node with best heuristic value.

• In case of backtracking expand the next best node respectively.

Main problem: Long halt in local maxima
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Main problem: Long halt in local maxima



Informed (Heuristic) Search Strategies

Given the following kind of information for weighted graphs:

Distance function h(state) being an estimated measure for the real distance to the target

• easily computable

• but accurate enough not to lead the search procedure to the wrong target

h() provides a nonnegative value: The smaller the value, the closer the target

Application: Optimistic hill climbing

• Special case of informed add-on to depth first search

• Expand only the node with best heuristic value.

• Backtracking is omitted: If heuristic value was wrong, the best result will not be found.

Main problem: Getting stuck in local maxima
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Main problem: Getting stuck in local maxima



Informed (Heuristic) Search Strategies

Given the following kind of information for weighted graphs:

Distance function h(state) being an estimated measure for the real distance to the target

• easily computable

• but accurate enough not to lead the search procedure to the wrong target

h() provides a nonnegative value: The smaller the value, the closer the target

Application: A* algorithm

• Informed add-on to best first search

• Expand the node where the sum of node label plus heuristic function is minimum.

Weitere Infos für die Anwendung von A* in öffentlichen Verkehrsnetzen:
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Seminarvortrag und Ausarbeitung von Stefan Görlich, SS 2005, Nr. 5
http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html



Informed (Heuristic) Search Strategies
A* algorithm for weighted graphs
(Generalisation of Dijkstra‘s algorithm) (State evaluation = Node evaluation) 

Requirement for edge weights: All edge lengths must be nonnegative.

hB(u) ≤ dB(u) 
Requirement for heuristic function hB(u) for estimating the real distance dB(u) to target node B:

Admissibility: 
hB(u) ≤ hB(v) + length(u,v) Monotonicity: 

• Put A into the set Done Label A by distance(A) := 0

Algorithm for the search of a path from A to B having minimal global edge length:

Put A into the set Done. Label A by distance(A) :  0.
Put all other nodes into the set YetToCompute.
Label all neighbors N of A by distance (N) := length (A,N) and

heuristic (N) := distance (N) + hB(N)( ) ( ) B( )
and all other nodes by distance (V) := ∞ and heuristic (V) := ∞.

• Repeat:
Choose node V from YetToCompute with minimum heuristic (V)

and shift V to the set Done.
Update all neighbors N of V that are still in YetToCompute:

distance (N) := min {distance (N),  distance (V) + length (V,N)}.
h i ti (N) di t (N) h (N) (if d t i )
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heuristic (N) := distance (N) + hB(N) (if update is necessary).
until V = B



Example for A* algorithm

4 2

7

1 13

B C
7 4 estimated distance to target Z

5

13

4
Z

G
A

10 5 0

10 6 9

5

4
1

5

G

D

8 3 1
5 5EF D

Shortest path from G to Z: G  E  Z (13 units)

A(5,G,15)
B(2,G,9)

Node (real distance from G, direct predecessor, estimated distance to target):

A(5,G,15)
B(2,G,9)

A(5,G,15) A(5,G,15)

C(1,G,5)
D(∞)
E(9,G,12)

  D(∞)
E(9,G,12)

D(∞)
E(9,G,12)

D(14,E,15)
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F(6,G,13)
Z(∞)

F(6,G,14)
Z(14,C,14)

F(6,G,14)
Z(14,C,14)

F(6,G,14)
Z(13,E,13)



Informed (Heuristic) Search Strategies
A* algorithm for weighted graphs
(Generalisation of Dijkstra‘s algorithm)

Requirement for edge weights: All edge lengths must be nonnegative.

hB(u) ≤ dB(u) 
Requirement for heuristic function hB(u) for estimating the real distance dB(u) to target node B:

Admissability: 

hB(u) ≤ hB(v) + length(u,v) What happens if monotonicity is abandoned ?

Example:

E

Aus: Diplomarbeit Andre Keller (SS 2008)
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Error: D will not be updated anymore because it is already in Done



Informed (Heuristic) Search Strategies
A* algorithm for weighted graphs
(Generalisation of Dijkstra‘s algorithm) (State evaluation = Node evaluation) 

Requirement for edge weights: All edge lengths must be nonnegative.

hB(u) ≤ dB(u) 
Requirement for heuristic function hB(u) for estimating the real distance dB(u) to target node B:

Admissability only: 

• Put A into the set Done. Label A by distance(A) := 0.
Put all other nodes into the set YetToCompute

Algorithm for the search of a path from A to B having minimal global edge length:

Put all other nodes into the set YetToCompute.
Label all neighbors N of A by distance (N) := length (A,N) and

heuristic (N) := distance (N) + hB(N) 
and all other nodes by distance (V) := ∞ and heuristic (V) := ∞.y ( ) ( )

• Repeat:
Choose node V from YetToCompute with minimum heuristic (V)

and shift V to the set Doneand shift V to the set Done.
Update all neighbors N of V from Done and YetToCompute:

distance (N) := min {distance (N),  distance (V) + length (V,N)}.
heuristic (N) := distance (N) + hB(N)  (if update is necessary).
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( ) ( ) B( ) ( p y)
If an update occurred to a neighbor N* of Done: Shift N* back to YetToCompute

until V = B



General Optimisation Methods for CSP

For the 1. search method introduced so far:
Approaching global solutions via partial solutions:

Backtracking

Approaching global solutions via partial solutions:

• Test all constraints even if the variables are not all assigned

St t i hi h t i t i t i l t d l d h ld t• States in which certain constraints are violated already should not 
be expanded further, but rather traced back.

Forward Checking

R d ll d i f i bl t i d h th t th f t• Reduce all domains for variables not assigned such that the future 
assignment still has a chance to be feasible.

• Trace back if this leads to empty domains
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• Trace back if this leads to empty domains.



General Optimisation Methods for CSP

8-queens-problem (solution by Bratko, 3rd method)

Example for forward checking:

Knowledge base: Query:

?-queens3(YLIst).queens3(YList) :-
sol(YList, [1,2,3,4,5,6,7,8],( , [ , , , , , , , ],

[1,2,3,4,5,6,7,8],
[-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7],
[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]).

sol([],[], DomainY, DomainU, DomainV).

sol([Y |YTail], [X | XTail], DomainY, DomainU, DomainV) :-
del(Y,DomainY,ReducedDomainY),( , , ),
U is X - Y,
del(U,DomainU,ReducedDomainU),
V is X + Y,
del(V,DomainV,ReducedDomainV),( , , ),
sol(YTail, XTail, ReducedDomainY, ReducedDomainU, 

ReducedDomainV).

del(Item, [Item|List], List).
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( , [ | ], )
del(Item, [First|Tail],[First|ResultTail]) :-

del(Item,Tail,ResultTail).



Traversing search graphs
Alternative 2. search method:

Systematic improvement of preliminary (global) solutions

• State: Assignment of values to all variables
(not all of them need be admissible)

• Node: describes state in search domain

• Edge: Transition of a state into an adjacent state
(unsually feasible in both directions)

( )
Each state has got an evaluation.

(unsually feasible in both directions)
• Adjacent state: New values for certain variables

keeping all values for the other variables

• Initial node: Start with any assignment to the variables.

• Initial node: initial state
(is always unique)

y g

• Final node: final state wanted (problem solution)
(several ones are admissible)
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• Final node: No adjacent state has got a better evaluation than the present one.
(se e a o es a e ad ss b e)



General Optimisation Methods for CSP

Min-Conflicts procedure:

For the 2. search method of systematic improvement:

Idea:

• Start with an arbitrary assignment of values (valid or not).

• Assign new values for certain variables such that the new assignment bares 
fewer conflicts than the old one.

Ad tAdvantages:

• happens to show good run time behaviour

• repair strategy“ if something changes dynamically• „repair strategy  if something changes dynamically

Disadvantages:

• Getting stuck“ in local minima• „Getting stuck  in local minima 

• counter measures: random walk, tabu list, ...
Weitere Details zum Thema Constraintsysteme:
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Seminarvortrag und Ausarbeitung von Stefan Schmidt, SS 2005, Nr. 6,
http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html



General Optimisation Methods for CSP

Min-Conflicts procedure:

For the 2. search method of systematic improvement:

Application: 8-queens-problem
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Quelle: Seminarvortrag von Stefan Schmidt, SS 2005, Nr. 6,
http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html



General Optimisation Methods for CSP

Min-Conflicts procedure:

For the 2. search method of systematic improvement:

Application: 8-queens-problem
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Quelle: Seminarvortrag von Stefan Schmidt, SS 2005, Nr. 6,
http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html



General Optimisation Methods for CSP

Min-Conflicts procedure:

For the 2. search method of systematic improvement:

Application: 8-queens-problem
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Quelle: Seminarvortrag von Stefan Schmidt, SS 2005, Nr. 6,
http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html



General Optimisation Methods for CSP

Min-Conflicts procedure:

For the 2. search method of systematic improvement:

Application: 8-queens-problem
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Quelle: Seminarvortrag von Stefan Schmidt, SS 2005, Nr. 6,
http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html



General Optimisation Methods for CSP

Min-Conflicts procedure:

For the 2. search method of systematic improvement:

Application: 8-queens-problem
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Quelle: Seminarvortrag von Stefan Schmidt, SS 2005, Nr. 6,
http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html



General Optimisation Methods for CSP

Min-Conflicts procedure:

For the 2. search method of systematic improvement:

Application: 8-queens-problem
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Quelle: Seminarvortrag von Stefan Schmidt, SS 2005, Nr. 6,
http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html



General Optimisation Methods for CSP

Working with tabu lists in search graphs:
For the 2. search method of systematic improvement:

g g

• Determine a certain validity range for the algorithm,
e.g. by a given number of operations

• Protocol all edges used in a transition from one state
to another

• All edges used within the previous valisity range are
not to be used again, neither their counterdirection.

Further enhancement: Simulated annealing
• Admit temporary deteriorations.

• Diminish the tolerance bound for deterioration in the course of algorithmic 
progress gradually.
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These methods will mainly be used in improvements of global solutions
• Good results in logistics (TSP generalisations)


