Applications of Artificial Intelligence

Sebastian Iwanowski FH Wedel

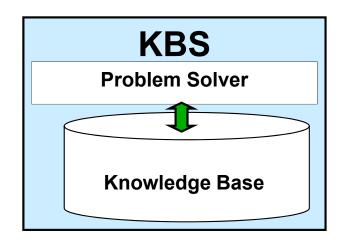
Chapter 3: Algorithmic Methods of Al

Search Strategies

Relevance of search strategies for logic problems:

Search for a solution of the satisfiability problem

Relevance of search strategies for knowledge-based systems:



The problem solver nearly always has to solve a satisfiability problem for constraints of the knowledge base!

All problem solvers search

Example for a knowledge-based search engine: **PROLOG**

PROLOG is knowledge-based:

Knowledge base

Facts and rules, dynamically extensible

• Inference engine ("Problem Solver")

deriving facts and rules automatically

Dialog component

Input: Query Output: yes / no, specification of unification applied in case of success, write as a "side effect"

Yes: The predicate of the query can be concluded from knowledge base.
No: The predicate of the query cannot be concluded from knowledge base. *No does not imply that it can be concluded that the predicate is false.*

Application: Class Scheduling

Given finite sets Courses, Rooms, Time slots

Task: Generate an injective (one-to-one) function $\textbf{C} \rightarrow \textbf{RxT}$

Strict Constraints (must be fulfilled in any case):

- Certain courses must not take place at the same time.
- For some courses, certain time slots are not admitted.
- For some courses, certain rooms are not admitted.

Soft constraints (may be violated):

- Certain courses should not take place at some times.
- Certain courses should take place successively.
- Certain courses should not take place on the same day.

Optimisation function:

- fewest violations of soft criteria
- fewest free periods for certain study programmes
- most uniform distribution on different days for ...

Application: Traveling Salesman Problem (TSP)

Given: Graph with node set V and weighted edges between the nodes

Task: Find a round trip traversing the graph edges reaching each node at least once.

Constraints:

• Only edges of the graph are to be used.

Optimisation function:

• Minimise the global edge costs !

Generalisation in logistic applications:

Constraints:

- Load and destribute goods obeying capacity restrictions !
- Consider time windows in which delivery may take place !

Soft criteria (may be violated):

- Certain edges have to be avoided.
- Certain time windows are unfavourable.

Application: Shortest Path Problem

Given: Graph with node set V and weighted edges between the nodes **Task:** For two selected nodes S and T, find a path through the graph.

Constraints:

• Only edges of the graph are to be used.

Optimisation function:

• Minimise the global edge costs !

Generalisation in transport applications (public or individual):

Constraints:

- Edge costs depend on the time used.
- Travelors are subject to individual contraints that may value certain edges in a different way or make them even unusable.

Soft criteria (may be violated):

- Certain edges have to be avoided
- Certain time windows are unfavourable

Constraint Satisfaction Problem (CSP)

Specification of a CSP:

- set of variables
- domains of definition
- constraints: relations between variables (strict or soft) (nomally, equations or inequalities)
- optimisation criterion

(normally, a real-valued function on the variables which has to be minimised or maximised)

valid solution:

assignment of values to all variables such that all strict constraints are satisfied

optimal solution:

valid solution optimising the optimisation criterion

<u>Constraint Solver</u> are programmes which find a valid or even optimal solution for a given CSP automatically.

Traversing search graphs

<u>1. search method:</u> Find a global solution via partial solutions

- Node: describes state in search domain
 - <u>State:</u> Assigning values to variables

Each state has got an evaluation.

- Edge: transition of a state into a subsequent state (usually feasible in one direction only)
 - <u>Subsequent state</u>: Assign a value to a new variable keeping the values for the already assigned variables
- Initial node: initial state (is always unique)
 - Initial node: No variable has got a value.
- Final node: final state wanted (problem solution)
 (several ones are admissible)
 - <u>Final node:</u> All specified variables have got admissible values.

Traversing search graphs

Different search goals are possible:

- 1) Find some solution or detect that there is none.
- 2) Find further solutions or detect that there are none.
- 3) Find all solutions.
- 4) Find an optimal solution or at least a rather good one.
- Expansion of a node: Compute all subsequent resp. adjacent nodes

Different search strategies differ in:

Which node has to be expanded next?

Special case:

• Search graph is a search tree

(makes the path from initial node to each final node unique)

Example for search trees in CSP

Constraint system:

Domain of definition for valid solutions:

Optimisation criterion:

- 1) (2 < x < 4)
- 2) (0 < y < 6)3) (x + y > 7)
- 4) $(x \cdot y < 10,5)$

 $x, y \in \mathbf{Q}$, at most k positions after the decimal point

Minimise |y - x|

Search tree:

- Each node has got fixed x and y values, nodes may be valid or not valid, for each node there is a unique optimal value.
- In level i, each x value has got i entries after the decimal point, the y value is minimum according constraint 3).

Expansion strategies:

- Only valid nodes may be expanded.
- The rightmost valid node on the next level is expanded.

• ...

Example for search trees in CSP

Constraint system:

- 1) (2 < x < 4)
- 2) (0 < y < 6)3) (x + y > 7)
- 4) $(x \cdot y < 10,5)$

Domain of definition for valid solutions:

Optimisation criterion:

 $x, y \in \mathbf{Q}$, at most k positions after the decimal point

 $\text{Minimise} |\mathbf{y} - \mathbf{x}|$

for bounded k:

- finite search space
- several valid solutions
- always 1 optimal solution

for unbounded k:

- infinite search space
- infinitely many valid solutions
- no optimal solution

In general, only *blind (uninformed) search* is possible:

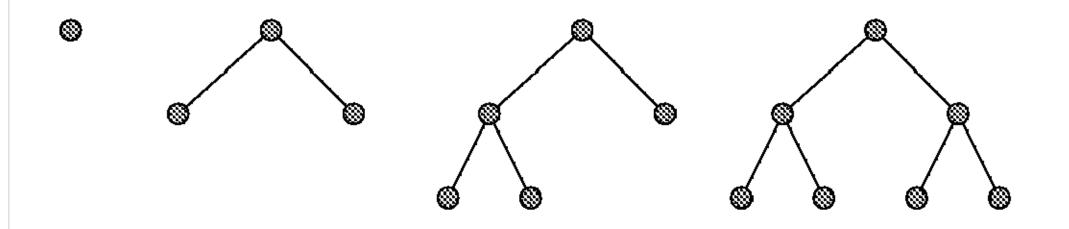
There is no information about good search search directions (the target is only recognised on arrival)

The most important search strategies:

- 1. breadth first search
- 2. depth first search
- 3. best first search

Weitere Infos zum Thema Suchen: Seminarvortrag und Ausarbeitung von Sven Schmidt, SS 2005, Nr. 4 *http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html*

breadth first search:

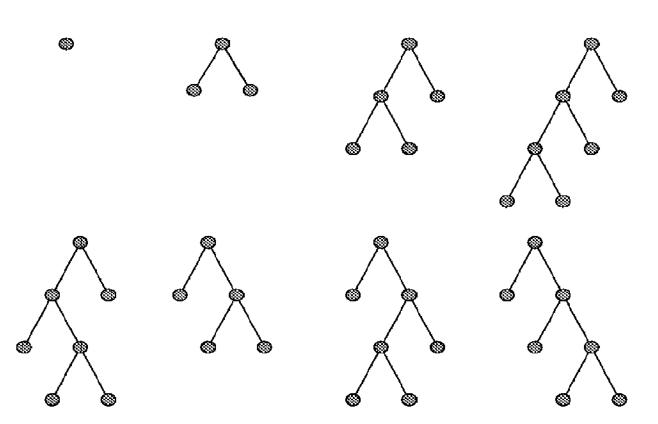


problem size: depth of search tree

Exponential time and space

for AI search procedures not relevant in most cases

depth first search:



Exponential time

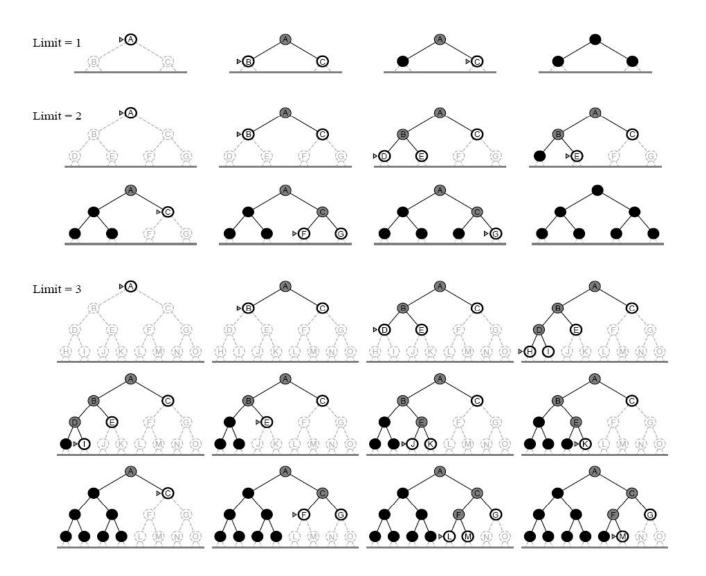
problem size: depth of search tree

Linear space

The "normal case" for standard AI procedures

bounded depth first search:

- Execute depth first search only up to limited search level.
- If not successful, increase limit for search level and start depth first search again.



best first search:

- Additional information: Evaluation label for the nodes.
- Search target: Find the best solution first (and the others later).
- Expand the node with best evaluation first.
- → Mixture of depth first and breadth first searches

In the *worst case* this is no better than breadth first search:

Exponential effort for time and space

Problem size:

Depth of search tree

For good evaluation functions, *the avarage case* is much better!

For special problems, even the worst case is much better:

Example: Special case "Shortest Path Problem":

Dijkstra's algorithm (quadratic effort for time, linear for space)

Problem size: Number of nodes

Dijkstra's algorithm for weighted graphs

(special case of best first search)

For all edges (u,v) there is a weight function: *length* (u,v) := length of an edge from node u to node v

Requirement for edge weights:

All lengths have to be nonnegative.

Algorithm for the search of a path from A to B having minimal global edge length:

- Put A into the set Done. Label A by *distance*(A) := 0.
 Put all other nodes into the set YetToCompute.
 Label all neighbors N of A by *distance* (N) := *length* (A,N) and all othe nodes by *distance* (V) := ∞.
- Repeat:

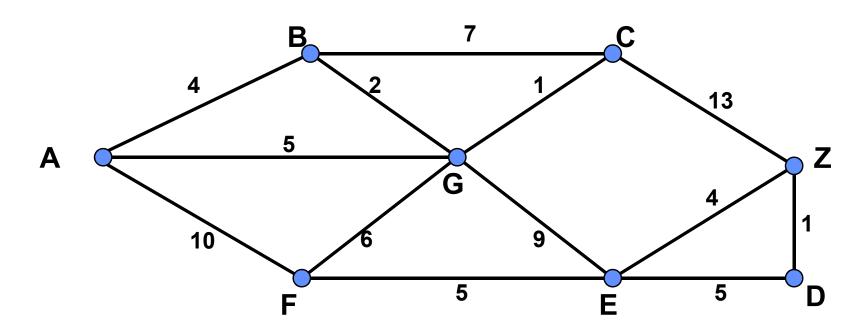
Choose node V from YetToCompute with minimum *distance* (V) and shift V to the set Done.

Update all neighbors N of V that are still in **YetToCompute**:

```
distance (N) := min {distance (N), distance (V) + length (V,N)}.
```

until V = B

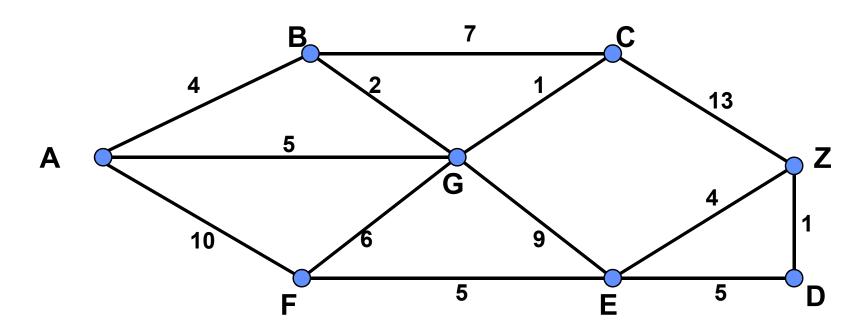
Example for Dijkstra's algorithm



Shortest path from A to Z: $A \rightarrow F \rightarrow E \rightarrow Z$ (17 units)

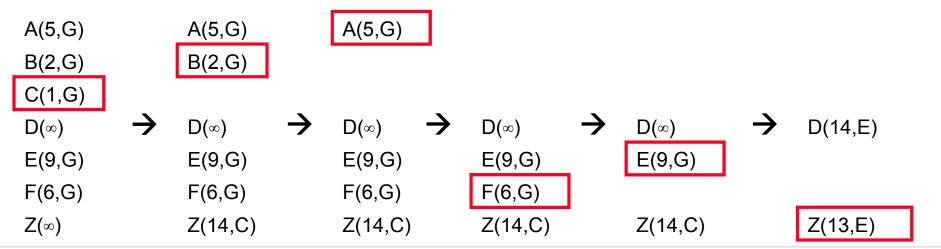
Animation dieser Aufgabe und weitere Infos zum Algorithmus von Dijkstra: Seminarvortrag und Ausarbeitung von Alex Prentki, WS 2004, Nr. 14 *http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/WS2004/SeminarMC.html*

Example for Dijkstra's algorithm



Shortest path from G to Z: $G \rightarrow E \rightarrow Z$ (13 units)

Node (distance from G, direct predecessor):



Given the following kind of information for weighted graphs:

Distance function h(state) being an *estimated* measure for the real distance to the target

- easily computable
- but accurate enough not to lead the search procedure to the wrong target

h() provides a nonnegative value: The smaller the value, the closer the target

Application: "Hill climbing"

- Informed add-on to depth first search:
- Among the possible candidates, expand the node with best heuristic value.
- In case of backtracking expand the next best node respectively.

Main problem: Long halt in local maxima

Given the following kind of information for weighted graphs:

Distance function h(state) being an estimated measure for the real distance to the target

- easily computable
- but accurate enough not to lead the search procedure to the wrong target

h() provides a nonnegative value: The smaller the value, the closer the target

Application: Optimistic hill climbing

- Special case of informed add-on to **depth first search**
- Expand only the node with best heuristic value.
- Backtracking is omitted: If heuristic value was wrong, the best result will not be found.

Main problem: <u>Getting stuck</u> in local maxima

Given the following kind of information for weighted graphs:

Distance function h(state) being an estimated measure for the real distance to the target

- easily computable
- but accurate enough not to lead the search procedure to the wrong target

h() provides a nonnegative value: The smaller the value, the closer the target

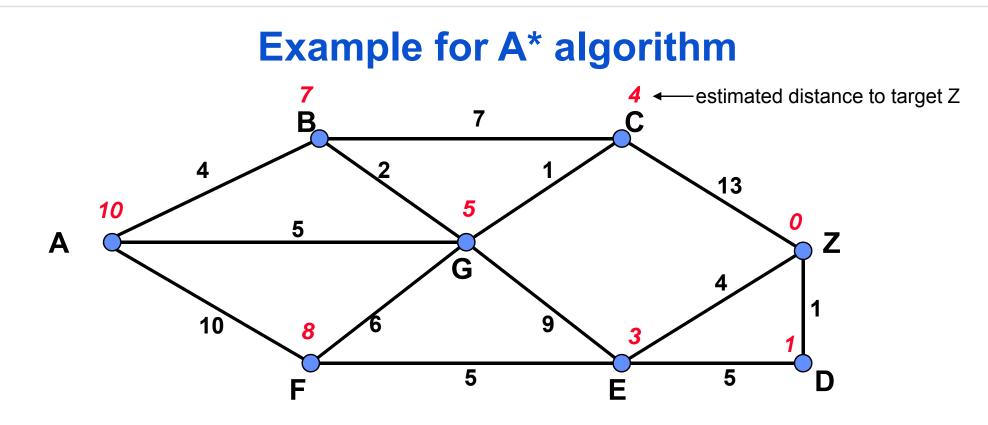
Application: A* algorithm

- Informed add-on to **best first search**
- Expand the node where the sum of node label **plus** heuristic function is minimum.

Weitere Infos für die Anwendung von A* in öffentlichen Verkehrsnetzen: Seminarvortrag und Ausarbeitung von Stefan Görlich, SS 2005, Nr. 5 *http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html*

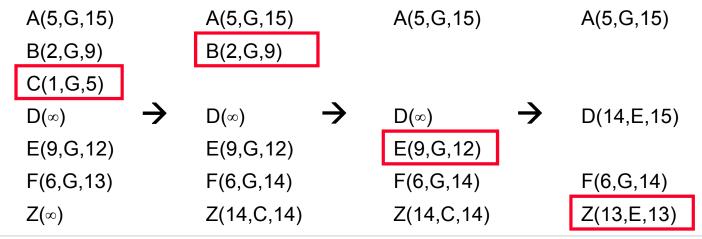
A* algorithm for weighted graphs

```
(Generalisation of Dijkstra's algorithm)
                                                        (State evaluation = Node evaluation)
Requirement for edge weights:
                                             All edge lengths must be nonnegative.
Requirement for heuristic function h_B(u) for estimating the real distance d_B(u) to target node B:
                  Admissibility:
                                                h_{\mathbb{P}}(u) \leq d_{\mathbb{P}}(u)
                  Monotonicity: h_B(u) \le h_B(v) + length(u,v)
Algorithm for the search of a path from A to B having minimal global edge length:
           Put A into the set Done. Label A by distance(A) := 0.
       ٠
           Put all other nodes into the set YetToCompute.
           Label all neighbors N of A by distance (N) := length (A,N) and
                                         heuristic (N) := distance (N) + h_{\rm B}(N)
           and all other nodes by distance (V) := \infty and heuristic (V) := \infty.
           Repeat:
       ٠
              Choose node V from YetToCompute with minimum heuristic (V)
                            and shift V to the set Done.
              Update all neighbors N of V that are still in YetToCompute:
                  distance (N) := min {distance (N), distance (V) + length (V,N)}.
                  heuristic (N) := distance (N) + h_{\rm B}(N) (if update is necessary).
           until V = B
```



Shortest path from G to Z: $G \rightarrow E \rightarrow Z$ (13 units)

Node (real distance from G, direct predecessor, estimated distance to target):



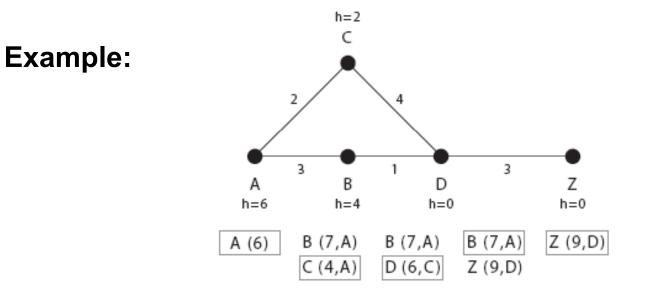
A* algorithm for weighted graphs

(Generalisation of Dijkstra's algorithm)

Requirement for edge weights:All edge lengths must be nonnegative.Requirement for heuristic function $h_B(u)$ for estimating the real distance $d_B(u)$ to target node B:Admissability: $h_B(u) \le d_B(u)$

What happens if monotonicity is abandoned ?

```
h_B(u) \le h_B(v) + \textit{length}(u,v)
```



Aus: Diplomarbeit Andre Keller (SS 2008)

Error: D will not be updated anymore because it is already in **Done**

A* algorithm for weighted graphs

(State evaluation = Node evaluation) (Generalisation of Dijkstra's algorithm) Requirement for edge weights: All edge lengths must be nonnegative. **Requirement for heuristic function** $h_B(u)$ for estimating the real distance $d_B(u)$ to target node B: Admissability only: $h_{B}(u) \leq d_{B}(u)$ Algorithm for the search of a path from A to B having minimal global edge length: Put A into the set **Done**. Label A by *distance*(A) := 0. ٠ Put all other nodes into the set **YetToCompute**. Label all neighbors N of A by *distance* (N) := *length* (A,N) and *heuristic* (N) := *distance* (N) + $h_B(N)$ and all other nodes by distance (V) := ∞ and heuristic (V) := ∞ . Repeat: ٠ Choose node V from **YetToCompute** with minimum *heuristic* (V) and shift V to the set Done. Update all neighbors N of V from **Done and YetToCompute**: distance (N) := min {distance (N), distance (V) + length (V,N)}. *heuristic* (N) := *distance* (N) + $h_B(N)$ (if update is necessary). If an update occurred to a neighbor N* of **Done**: Shift N* back to YetToCompute until V = B

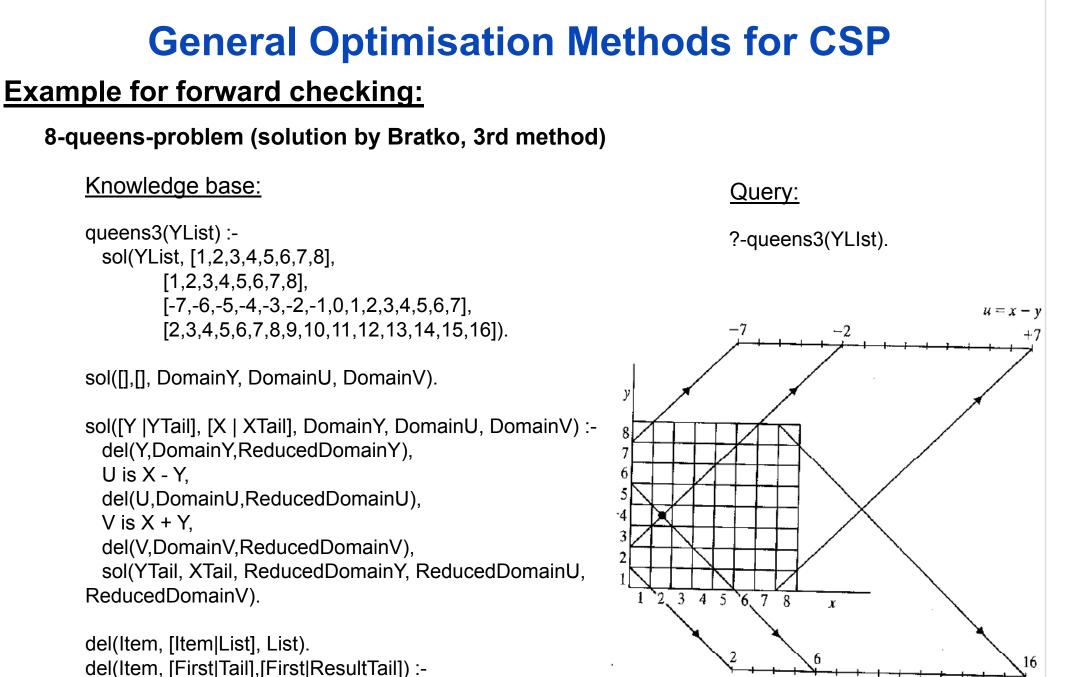
For the 1. search method introduced so far: Approaching global solutions via partial solutions:

Backtracking

- Test all constraints even if the variables are not all assigned
- States in which certain constraints are violated already should not be expanded further, but rather traced back.

Forward Checking

- Reduce all domains for variables not assigned such that the future assignment still has a chance to be feasible.
- Trace back if this leads to empty domains.



```
del(Item,Tail,ResultTail).
```

v = x + y

Traversing search graphs

Alternative 2. search method:

Systematic improvement of preliminary (global) solutions

- Node: describes state in search domain
 - <u>State:</u> Assignment of values to all variables (not all of them need be admissible) Each state has got an evaluation.
- Edge: Transition of a state into an adjacent state (unsually feasible in both directions)
 - Adjacent state: New values for certain variables keeping all values for the other variables
- Initial node: initial state (is always unique)
 - Initial node: Start with any assignment to the variables.
- Final node: final state wanted (problem solution)
 (several ones are admissible)
 - <u>Final node:</u> No adjacent state has got a better evaluation than the present one.

For the 2. search method of systematic improvement:

Min-Conflicts procedure:

Idea:

- Start with an arbitrary assignment of values (valid or not).
- Assign new values for certain variables such that the new assignment bares fewer conflicts than the old one.

Advantages:

- happens to show good run time behaviour
- "repair strategy" if something changes dynamically

Disadvantages:

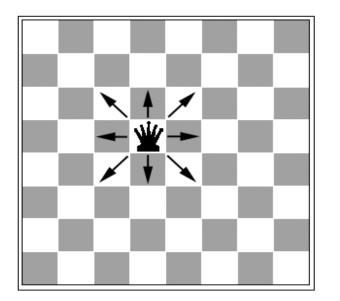
- "Getting stuck" in local minima
 - counter measures: random walk, tabu list, ...

Weitere Details zum Thema Constraintsysteme: Seminarvortrag und Ausarbeitung von Stefan Schmidt, SS 2005, Nr. 6, http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html

For the 2. search method of systematic improvement:

Min-Conflicts procedure:

Application: 8-queens-problem

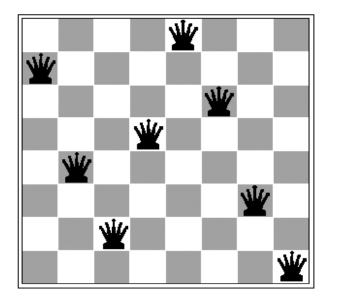


Quelle: Seminarvortrag von Stefan Schmidt, SS 2005, Nr. 6, http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html

For the 2. search method of systematic improvement:

Min-Conflicts procedure:

Application: 8-queens-problem

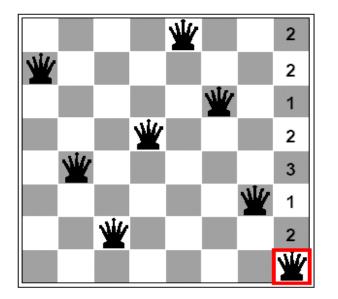


Quelle: Seminarvortrag von Stefan Schmidt, SS 2005, Nr. 6, http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html

For the 2. search method of systematic improvement:

Min-Conflicts procedure:

Application: 8-queens-problem

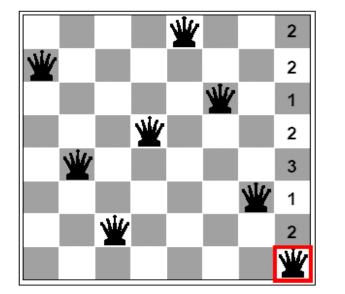


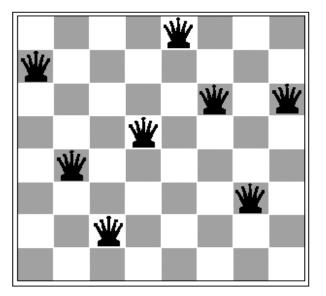
Quelle: Seminarvortrag von Stefan Schmidt, SS 2005, Nr. 6, http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html

For the 2. search method of systematic improvement:

Min-Conflicts procedure:

Application: 8-queens-problem



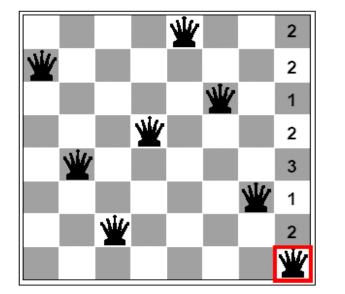


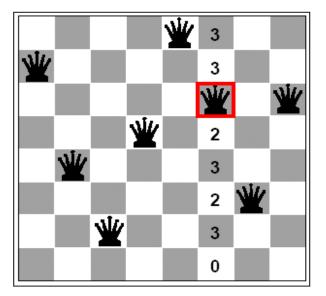
Quelle: Seminarvortrag von Stefan Schmidt, SS 2005, Nr. 6, http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html

For the 2. search method of systematic improvement:

Min-Conflicts procedure:

Application: 8-queens-problem



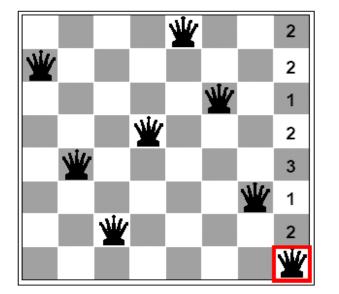


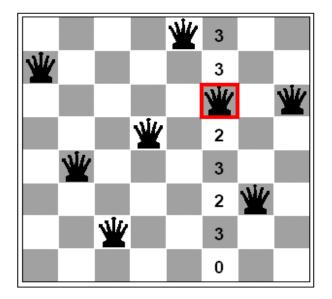
Quelle: Seminarvortrag von Stefan Schmidt, SS 2005, Nr. 6, http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html

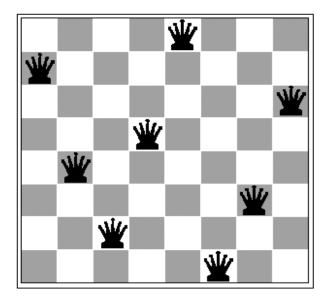
For the 2. search method of systematic improvement:

Min-Conflicts procedure:

Application: 8-queens-problem







Quelle: Seminarvortrag von Stefan Schmidt, SS 2005, Nr. 6, http://www.fh-wedel.de/archiv/iw/Lehrveranstaltungen/SS2005/SeminarKI.html

For the 2. search method of systematic improvement:

Working with tabu lists in search graphs:

- Determine a certain validity range for the algorithm, e.g. by a given number of operations
- Protocol all edges used in a transition from one state to another
- All edges used within the previous valisity range are not to be used again, neither their counterdirection.

Further enhancement: Simulated annealing

- Admit temporary deteriorations.
- Diminish the tolerance bound for deterioration in the course of algorithmic progress gradually.

These methods will mainly be used in improvements of global solutions

• Good results in logistics (TSP generalisations)

