
Algorithmicsg

Sebastian Iwanowski
FH W d lFH Wedel

4. Graph algorithms
4.1 Minimal spanning trees as motivation for basic algorithms

FH Wedel Prof. Dr. Sebastian Iwanowski Alg41 Slide 1

Algorithmics 4
4.1 Minimal spanning Trees
Kruskal‘s Algorithm (simple variant):
Construction of a minimum spanning tree for an arbitrary graph G:

• Start with an empty forest F consisting of no edge

g (p)

• Repeat for all edges e1, e2, ..., em of G (edges are in sorted order):
Check if ei may be inserted into F

such that F is still without circles;
If i t i t FIf so, insert ei into F;

until F consists of n-1 edges (let n be the number of vertices of G).

Thus constructed forest F is a minimum spanning tree of GTheorem:

O(m log m + n2) (nm due to determination of connectivity component)Time complexity:

see next slideProof:
How to do this smarter?

References for catching up and delving into:
Skript Diskrete Mathematik 6 Folien 2 3 4 8 11 12 13 (graph theoretic basics)

O(m log m n) (nm due to determination of connectivity component)Time complexity:

FH Wedel Prof. Dr. Sebastian Iwanowski Alg41 Slide 2

Skript Diskrete Mathematik 6, Folien 2,3,4,8,11,12,13 (graph theoretic basics)
Turau Kap. 2.4 (Grundlagen), 3.6.1 (Kruskal)
Cormen ch. 23 (Minimal spanning trees)

Algorithmik 4

Proposition (implies correctness of Kruskal‘s algorithm, why?):

4.1 Minimal spanning Trees
p (p g , y)

For each edge set {e1, e2, ..., ej} which is successively constructed by Kruskal‘s algorithm
there is a minimum spanning tree Tj of G containing this edge set.

Proof by mathematical induction over j

The assumption may hold for an edge set Ej consisting of j edges, i,e, there is a minimum
Inductive step:

j
spanning tree Tj where Ej ⊆ Tj.
Let ej+1 be the next edge chosen by Kruskal. If kj+1 ∈ Tj, choose Tj+1 = Tj.
Otherwise there must be a circle in Tj ∪ {ej+1} containing ej+1. At least one of the other edges e0 of
this circle should not be contained in Ej (otherwise Kruskal would not have chosen ej 1 becausethis circle should not be contained in Ej (otherwise, Kruskal would not have chosen ej+1 because
Ej would not have been free of circles). Replace this edge e0 by edge wj+1 => spanning tree Tj+1
containing Ej ∪ {ej+1}.
c(e0) ≥ c(ej+1), because otherwise Kruskal would have chosen e0 before ej+1.

Deutschsprachige Referenzen zum Nacharbeiten und Vertiefen:
Skript Alt Lemma 4 3 2 (S 76): Beweisskizze eines verwandten Satzes

Thus, Tj+1 must be minimum as well as Tj.

FH Wedel Prof. Dr. Sebastian Iwanowski Alg41 Slide 3

Skript Alt, Lemma 4.3.2 (S. 76): Beweisskizze eines verwandten Satzes
Turau, Kapitel 3.6.1: genauer Beweis des Satzes wie oben (inkl. Induktionsverankerung)
Lang: Skript Berechenbarkeit und Komplexität, Kap. 4.2.3 (Greedy-Algorithmen für Matroide)

Algorithmics 4
4.1 Basic algorithms for graph theory
Union-Find-Structure

In general: works on sets of sets,
implements efficient location of the set of a given element

and efficient union of sets

returns a unique reference node of the connectivity component of v.O(log n) Find (v)

Graph theoretic application: efficient location and union of connectivity components

With path compression:

unifies the connectivity components of v and w after reference node
has been determined

O(1) Union (v,w)

With path compression:
Expected time complexity of Find is in O(log*n)

Data representation:

References:

Data representation:
Array of nodes: The contents are pairs of the form (index of parent, height of subtree)

FH Wedel Prof. Dr. Sebastian Iwanowski Alg41 Slide 4

References:
Skript Alt, Kap. 3.2 (p. 56 ff.), Cormen ch. 21 (Data structures for disjoint sets)

Algorithmics 4

Heap

4.1 Basic algorithms for graph theory
p

Efficient management of a priority queue

Invariants:
1) A heap is a complete binary tree (elements may be missing only in the last depth level)

DeleteMin() deletes the minimal element of the heap.O(log n)

1) A heap is a complete binary tree (elements may be missing only in the last depth level).
2) The keys of the children of each node are not less than the key of each node.

p
Insert (v) inserts an arbitrary new element into the heap.
SearchMin() finds the minimal element of the heap.

O(log n)
O(1)

Data representation:
Array of the heap nodes:

The contents are the contents of the heap nodes.

References:

p
The children of the node with index i are the nodes with indices 2i und 2i+1

(assuming that the array starts with index 1)

FH Wedel Prof. Dr. Sebastian Iwanowski Alg41 Slide 5

References:
Cormen, ch. 6 (Heapsort)

Algorithmics 4
4.1 Minimal spanning Trees
Kruskal‘s Algorithm (efficient variant):
Construction of a minimal spanning tree for an arbitrary graph G:

• Start with an empty forest F consisting of no edge

g ()

While F consists of less than n 1 edges:

• Start with a union-find-structure in which each vertex has its own connectivity component
• Insert all edges into a heap

• While F consists of less than n-1 edges:
Search and delete the minimal element emin from the heap;
Check if the vertices v and w incident with emin are in the same connectvity component
If not: Insert emin into F and unify the connectivity components of v and w.min y y p

O(m log m) (m is the number of edges in G)Time complexity:

References:

FH Wedel Prof. Dr. Sebastian Iwanowski Alg41 Slide 6

References:
Cormen, ch. 23.2 (Algorithms of Kruskal and Prim)

