Algorithmics

Sebastian Iwanowski FH Wedel

3. Solutions for the dictionary problem3.4 Optimal binary search trees

Algorithmics 3

3.4 Optimal binary search trees

Problem:

- i. Let $S = \{a_1, a_2, ..., a_n\}$ be a linearily ordered set with predetermined probabilities p_i for the occurrence of a_i und q_i für the occurrence of an element a_i in between: $a_i < a < a_{i+1}$.
- ii. Construct a binary search tree which minimizes the expected response time (i.e. number of comparisons with elements a_i).

Required tree properties:

The tree should not only find the position of elements contained in the given dictionary, but also locate the position where new elements would be placed:

Inner nodes correspond to elements contained, leaves correspond to elements in between

Solution by the algorithm of Bellman (1957)

Time for the construction of the search tree: O(n³) (easy to prove)

Improvement: O(n²)

References:

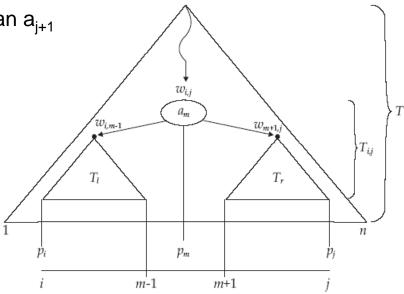
Skript Alt S. 65 – 70 (ch. 3.3) in German: Other references are less clear

Cormen 15.5 (ch. Dynamic Programming)

Knuth 6.2.2 (Binary Tree Searching)

Bellman's Algorithm for optimal binary search trees:

 $T_{i,j}$: subtree for search items greater than a_{i-1} and less than a_{i+1}



Special cases:

 $T_{i,i}$: subtree for search items greater than a_{i-1} and less than a_{i+1} . This tree consist of one node comparing with a_i

T_{i,i-1}: subtree for search items greater than a_{i-1} and less than a_i. This tree is empty and corresponds to a leaf.

T_{i,n}: subtree for search items greater than a_{i-1}

 $T_{1,j}$: subtree for search items less than a_{j+1}

T_{1,n}: tree for all search items

Notation: Skript Alt

Bellman's Algorithm for optimal binary search trees:

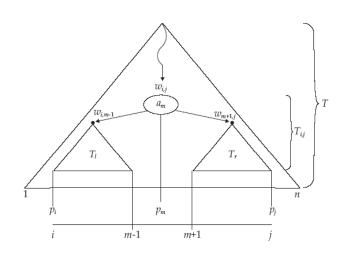
 $T_{i,j}$: subtree for search items greater than a_{i-1} and less than a_{j+1} $r_{i,j}$: index m of the root of $T_{i,j}$: The item to be compared with is a_m

 $P(T_{i,j})$: expected costs for $T_{i,j}$ if $T_{i,j}$ is chosen

 $w_{i,j}$: probability that $T_{i,j}$ is chosen

 $c_{i,i}$: expected costs for $T_{i,j}$ if no precondition is known

Lemma 3.3.5: If $T_{i,i}$ is optimal, then each subtree is also optimal.



Algorithm 3: [Bellman, 1957] Iterative Suche nach dem optimalen Suchbaum T.

```
1: for i = 0, ..., n do
                           Initialization for empty trees corresponding to
2: w_{i+1,i} = q_i
                          the intervals in between the search keys
3: c_{i+1,i} = 0
                   ____ k+1 is the number of elements considered in Tii
4: end for
5: for k = 0, ..., n-1 do
                                      ____-This is improved in Knuth,
     for i=1,\ldots,n-k do
        i = i + k
        Bestimme m mit i \leq m \leq j, so dass c_{i,m-1} + c_{m+1,j} minimal ist.
       r_{i,j} = m
9:
        w_{i,j} = w_{i,m-1} + w_{m+1,j} + p_m
10:
        c_{i,j} = c_{i,m-1} + c_{m+1,j} + w_{i,j}
11:
     end for
13: end for
```

Assertion 3.3.6:

$$\begin{split} w_{i,j} &= w_{i,m-1} + p_m + w_{m+1,,j} \\ c_{i,j} &= w_{i,j} \cdot P(T_{i,j}) \\ &= w_{i,j} \cdot (1 + P(T_{i,m-1}) + P(T_{m+1,j})) \\ &= w_{i,j} + c_{i,m-1} + c_{m+1,,j} \end{split}$$

Lemma 3.3.7:

$$r_{i,j-1} \le r_{i,j} \le r_{i+1,j}$$

Notation: Skript Alt

Example from Skript Alt:

Resulting construction of search tree:

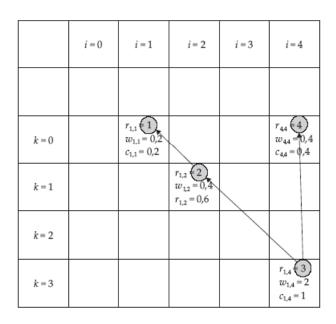
$$p_1=0$$
 $p_2=0,1$ $p_3=0,2$ $p_4=0,2$ $q_0=0,1$ $q_1=0,1$ $q_2=0,1$ $q_3=0,1$ $q_4=0,1$

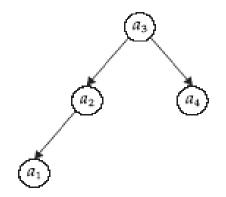
Short notation:

$$(0,1) - \mathbf{1}(0) - (0,1) - \mathbf{2}(0,1) - (0,1) - \mathbf{3}(0,2) - (0,1) - \mathbf{4}(0,2) - (0,1)$$

i	0	1	2	3	4
Init	$w_{1,0} = 0,1$	$w_{2,1} = 0, 1$	$w_{3,2} = 0, 1$	$w_{4,3} = 0, 1$	$w_{5,4} = 0, 1$
	$c_{1,0} = 0$	$c_{2,1} = 0$	$c_{3,2} = 0$	$c_{4,3} = 0$	$c_{5,4} = 0$
k = 0		$r_{1,1} = 1$	$r_{2,2} = 2$	$r_{3,3} = 3$	$r_{4,4} = 4$
		$w_{1,1} = 0, 2$	$w_{2,2} = 0, 3$	$w_{3,3} = 0, 4$	$w_{4,4} = 0, 4$
		$c_{1,1} = 0, 2$	$c_{2,2} = 0,3$	$c_{3,3} = 0,4$	$c_{4,4} = 0, 4$
k=1		$r_{1,2} = 2$	$r_{2,3} = 3$	$r_{3,4} = 3$	
		$w_{1,2} = 0, 4$	$w_{2,3} = 0,6$	$w_{3,4} = 0,7$	
		$c_{1,2} = 0,6$	$c_{2,3} = 0, 9$	$c_{3,4} = 1, 1$	_
k=2		$r_{1,3} = 2$	$r_{2,4} = 3$	٠	^
		$w_{1,3} = 0, 7$	$w_{2,4} = 0, 9$		
		$c_{1,3} = 1,3$	$c_{2,4} = 1,6$	1,0	wy= /
k = 3		$r_{1,4} = 3$			
		$w_{1,4} = 1$			
		$c_{1,4} = 2$			

Tabelle 3.1: Tabelle zur Speicherung der Berechnungen des Algorithmus





Notation: Skript Alt