

1.1 Vergleich von grundlegenden Sortiertechniken

Funktionsweise der Algorithmen
 PermutationSort, SelectionSort, Mergesort, Quicksort

Beschreibung in Worten, graphische Visualisierung mit Arrays

Laufzeitabschätzung für den schlechtesten Fall

Aufstellen von Rekursionsgleichungen, explizite Auflösung Abschätzung mit O-Notation

• Ergebnisse: PermutationSort: O(exp(n))

SelectionSort: O(n²)

Mergesort: $O(n \log n)$

Quicksort: $O(n^2)$

Referenzen zum Nacharbeiten:

Alt S. 4 - 7

1.1 Vergleich von grundlegenden Sortiertechniken

Im Detail: Quicksort

Quicksort (A, i, j):

 A ist ein Array aus n Elementen (a[1], ..., a[n]).
 i,j sind Indizes zwischen 1 und n.

 Am Ende sind die Elemente zwischen a[i] und a[j] aufsteigend sortiert.

Partition (A,i,k,j) → order:

Am Ende ist A zwischen a[i] und a[j] umsortiert, sodass zunächst nur Elemente $\leq x := a[k]$ kommen, dann x und dann nur Elemente > x. Der Rückgabewert order ist die neue Position von x.

Implementierung von Quicksort (Start mit Quicksort (A,1,n)):

```
if i < j
    then k := Zufallszahl zwischen i und j;
        dividingIndex := Partition (A,k);
        Quicksort (A, i, dividingIndex-1);
        Quicksort (A, dividingIndex+1,j);</pre>
```

Referenzen zum Nacharbeiten und Vertiefen:

Cormen Kap. 7.1 (ohne Zufallszahl)

1.1 Vergleich von grundlegenden Sortiertechniken

Im Detail: Quicksort

• Partition (A,i,k,j) → order:

Am Ende ist A zwischen a[i] und a[j] umsortiert, sodass zunächst nur Elemente $\leq x := a[k]$ kommen, dann x und dann nur Elemente > x. Der Rückgabewert order ist die neue Position von x.

Implementierung von Partition:

```
count := Anzahl der Elemente ≤ X zwischen a[i] und a[j];
order := i+count-1;
Vertausche a[k] mit a[order]; // Jetzt steht x an der richtigen Position
right := j;
for left := 0 to count-2 do
   if a[i+left] > x
        then while a[right] > x do right := right - 1;
        Vertausche a[i+left] mit a[j];
return order;
```

Referenzen zum Nacharbeiten und Vertiefen:

Cormen Kap. 7.1 (deutlich andere Implementierung von Partition)

1.1 Vergleich von grundlegenden Sortiertechniken

Im Detail: Genaue Laufzeitabschätzung von Quicksort: Θ (n²)

Untere Laufzeitschranke Ω(n²) :

Es wird für jedes n eine Eingabe angegeben, deren Laufzeit in $\Omega(n^2)$ ist

Obere Laufzeitschranke O(n²):

Benutzung der Rekursionsgleichung im Skript und Beweis von $T(n) \le c \cdot n^2$ durch verallgemeinerte vollständige Induktion über n

Anmerkung:

Die Behauptung, dass k=1 und k= n die schlechtesten Fälle sind, wird im Skript nicht bewiesen und für den Beweis der Laufzeitschranken auch nicht benötigt.

Referenzen zum Nacharbeiten und Vertiefen:

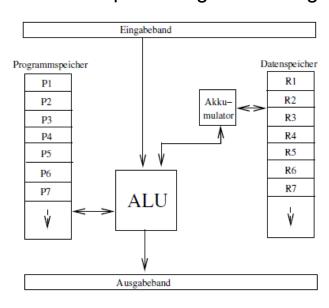
Alt S. 7, Cormen Kap. 7.2

1.2 Einführung in Komplexitätsmaße für Algorithmen

Berechnungsmodell: RAM (Random Access Machine)

Definition einer RAM

Kleiner assembler-ähnlicher Befehlssatz, Steuerkopf mit Zugriff auf Programmspeicher und Datenspeicher in konstanter Zeit



Befehl	:	auszuführende Operation
LOAD a	:	$R_0 \longleftarrow R_a$
STORE i	:	$R_i \longleftarrow R_0$
ADD a	:	$R_0 \longleftarrow R_0 + R_a$
SUB a	:	$R_0 \longleftarrow R_0 - R_a$
MULT a	:	$R_0 \longleftarrow R_= \cdot R_a$
DIV a	:	$R_0 \longleftarrow \lfloor R_0/R_a \rfloor$
READ i	:	$R_0 \leftarrow$ aktuelles Inputszeichen
WRITE i	:	Inhalt von $R_i \longrightarrow Ausgabeband$
JUMP b	:	nächster Befehl ist P_i
JZERO b	:	nächster Befehl ist P_i , wenn $R_0 = 0$
JGZERO b	:	nächster Befehl ist P_i , wenn $R_0 > 0$
HALT	:	Stoppbefehl

aus Skript Lang

Referenzen zum Nacharbeiten und Vertiefen:

Alt S. 11-13 Skript Lang 2007, Kap. 2.6

1.2 Einführung in Komplexitätsmaße für Algorithmen

Berechnungsmodell: RAM (Random Access Machine)

Kostenmaße

EKM: Alle Operationen kosten konstant viel Zeit unabhängig von Größe der Operanden.

LKM: Die Kosten einer Operation hängen von der Größe der Operanden ab.

Laufzeitäquivalenz

Algorithmus benötigt auf einer RAM die Zeit $\Theta(f(n))$ (LKM oder EKM)

 \Leftrightarrow Algorithmus benötigt auf einem normalen Computer die Zeit $\Theta(f(n))$.

Polynomielle Verwandtschaft

Ein Algorithmus benötigt auf einer RAM die Zeit Θ(f(n)) im LKM

 \Leftrightarrow Algorithmus benötigt auf einer Turingmaschine die Zeit $\Theta(P(f(n)))$ für ein Polynom P.

Referenzen zum Nacharbeiten und Vertiefen:

Alt S. 11-13

Skript Lang 2007, Kap. 2.6

1.2 Einführung in Komplexitätsmaße für Algorithmen

Rechnen mit Landau-Symbolen

Definition von O, Ω und Θ

$$\begin{split} T(n) &\in O \ (f(n)) \Leftrightarrow \exists c \in \mathbb{R} \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 \colon T(n) \leq c \bullet f(n) \\ T(n) &\in \Omega \ (f(n)) \Leftrightarrow \exists c \in \mathbb{R} \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 \colon T(n) \geq c \bullet f(n) \\ T(n) &\in \Theta \ (f(n)) \Leftrightarrow \exists c_1, c_2 \in \mathbb{R} \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 \colon c_1 \bullet f(n) \leq T(n) \leq c_2 \bullet f(n) \end{split}$$

Rechenregeln für Landausymbole

1)
$$x < y \Rightarrow O(n^x) \subseteq O(n^y)$$

2)
$$x > 0 \Rightarrow O(\log n) \subseteq O(n^x)$$

3) O
$$(f(n)+g(n)) \in O(f(n)) \cup O(g(n))$$
 ("Maximum")

Referenzen zum Nacharbeiten und Vertiefen:

Cormen Kap. 3

1.2 Einführung in Komplexitätsmaße für Algorithmen

Master-Theorem

für die Laufzeitabschätzung von Divide+Conquer-Algorithmen

Sei die Rekursionsgleichung eines Divide+Conquer-Algorithmus gegeben durch:

$$T(n) = a T(n/b) + f(n)$$

Dann gilt für $f(n) \in \Theta(n^k)$:

1)
$$a < b^k \Rightarrow T(n) \in \Theta(n^k)$$

2)
$$a = b^k \Rightarrow T(n) \in \Theta(n^k \log n)$$

3)
$$a > b^k \Rightarrow T(n) \in \Theta(n^{\log_b a})$$

Dieselben Resultate gelten für O und Ω

Referenzen zum Nacharbeiten und Vertiefen:

Cormen Kap. 4

1.2 Einführung in Komplexitätsmaße für Algorithmen

Bedeutung der Landausymbole für die Komplexität von Algorithmen

Sei I(A) eine zulässige Eingabe für den Algorithmus A und size(I(A)) die Größe der Eingabe. Sei $T_A(I(A))$ die Laufzeit (als Operationszähler) des Algorithmus, wenn I(A) die Eingabe ist.

Obere Laufzeitschranke im schlechtesten Fall:

A ist ein O(f(n))-Algorithmus $\Leftrightarrow \forall n \in \mathbb{N} \ \forall \ I(A)$, size(I(A))=n: $T_A(I(A)) \in O(f(n))$ "Alle Eingaben müssen laufzeitbeschränkt sein."

Untere Laufzeitschranke im schlechtesten Fall:

A ist ein $\Omega(f(n))$ -Algorithmus $\Leftrightarrow \forall n \in \mathbb{N} \ \exists \ I(A), size(I(A)) = n : T_A(I(A)) \in \Omega$ (f(n)) "Für jedes n gibt es eine Eingabe mit dieser Mindestlaufzeit."

Exakte asymptotische Laufzeit im schlechtesten Fall:

A ist ein $\Theta(f(n))$ -Algorithmus im schwachen Sinn \Leftrightarrow A ist ein O(f(n))-Algorithmus und A ist ein $\Omega(f(n))$ -Algorithmus

A ist ein $\Theta(f(n))$ -Algorithmus im starken Sinn $\Leftrightarrow \forall n \in \mathbb{N} \ \forall \ I(A), size(I(A)) = n$: $T_A(I(A)) \in \Theta(f(n))$ "Alle Eingaben haben genau diese Laufzeit (zwischen 2 Konstanten)."

Referenzen zum Nacharbeiten und Vertiefen: ? (für Hinweise bin ich dankbar)

1.3 Untere Schranken für vergleichsbasierte Algorithmen

Untere Schranke für das Suchen eines maximalen Elements einer Menge

Die Menge habe n Elemente (Inputgröße).

Der Vergleichsgraph muss zusammenhängend sein \rightarrow mindestens n-1 Vergleiche ($\Omega(n)$) Einen O(n)-Algorithmus dafür gibt es \rightarrow Dieser ist optimal.

Untere Schranke für das Suchen des k-ten Elements einer Menge

Die Menge habe n Elemente (Inputgröße).

Der Vergleichsgraph muss zusammenhängend sein \rightarrow mindestens n-1 Vergleiche ($\Omega(n)$) Optimaler Algorithmus dafür? \rightarrow Kapitel 2

Untere Schranke f
ür das Sortierproblem

Zusammenhang zwischen Tiefe des Vergleichsbaums und Laufzeit in Vergleichen Zusammenhang zwischen Tiefe von binären Suchbäumen und Anzahl der Blätter Abschätzung für n!, Folgerung für log (n!) \rightarrow mindestens Ω (n log n) Vergleiche Der Mergesort braucht nur O(n log n) Vergleiche \rightarrow Dieser ist optimal.

Referenzen zum Nacharbeiten:

Alt S. 17 - 21