Applications of Artificial Intelligence

Sebastian Iwanowski FH Wedel

Chapter 4:

Knowledge-Based Systems

4.5: Concluding Comparison of the Different Reasoning Techniques

Application from practice: Technical diagnosis

Run time system:

(knowledge-based systems call this **problem solver / inference engine**)

Input:

- Setting certain control inputs
- Observing values depending on this setting

Output:

A unique instruction how to repair which component

This is where diagnostic systems do not differ!

Application from practice: Technical diagnosis

Knowledge-based diagnosis:

- 1) Knowledge acquisition: Input into knowledge base
- rule-based (symptom-based)
- case-based
- model-based

as alternatives

2) Knowledge structure

depends on knowledge acquisition

3) Knowledge processing be the problem solver

depends on knowledge structure

This is where diagnostic systems may differ!

1. Symptom-Based Diagnosis

Input to knowledge base:

- Causing and manifest faults for the overall system
- Possible symptoms (measurements)
- Relations between faults and symptoms (rules)

Structure of knowledge base:

Semantic network (e.g.,fault networks, decision trees)

Job of inference engine:

Navigation in semantic network

This is "classical" expert system technology

2. Case-Based Diagnosis

Input to knowledge base:

Cases with complete symptom vector and associated faults (classified unambiguously)

Structure of knowledge base:

a) Classical AI, with similarity measure:

 Similarity measure for incomplete symptom vectors (often weighted between different types of symptoms)

b) with neural networks:

Neural network with input layer (for symptom vector) and output layer (for faults)
and (optionally) intermediate layer of nodes and edges, marked by variable weights.

Job of inference engine:

- **a)** For a new vector given, find the most similar symptom vector of the knowledge base.
 - Assign the same fault to the new vector as associated to the reference vector in the knowledge base (possibly with a probability value).
- **b)** Apply new symptom vector to the input layer of the network.
 - Read the associated fault from the output layer.

3. Model-Based Diagnosis

Goal:

- fast knowledge acquisition
- exact and provable solution of problem solver

Input to knowledge base:

- system model: hierarchical structure of the system (+ how the components are connected)
- component models

Structure of knowledge base:

constraint network (assembled automatically)

Job of inference engine:

- GDE approach: conflict-based candidate generation
- sophisticated acceleration techniques in order to get resonable run time behaviour

Systematic classification of inference techniques

heuristic:

```
if <features> then <solution>
```

- causal:
 - overlapping classification:

```
if <solution> then <features>
```

structural classification:

local behavioural model => system function
(search for the best behavioural models being consistent with the
observed overall system behaviour)

Systematic classification of inference techniques

case-based:

Given cases with **features** <u>and</u> **solution** Apply regression technique (interpolation)

- with similarity measure: arbitrary regression
- in neural networks distributed linear regression
- in data mining:

features from knowledge base => new correlations

Supplementary, apply one of the other methods (heuristic or causal)

Systematic classification of inference techniques

Classification of knowledge-based inference by depth

heuristic
 for relatively flat knowledge

• causal for flat and deep knowledge

• case-based (similarity measure, neural network, data mining) for very flat knowledge

In principle, this may be arbitrarily combined with other dimensions of knowledge quality:

- certain vs. uncertain (consider the <u>probability</u> of a statement)
- exact vs. fuzzy (consider the <u>accuracy</u> of a statement)

Concluding comparison for applicability in practice

	rule-based	case-based	model-based
fast run time component	++	++	0
fast knowledge acquisition	0	++	+
fits to systems of complex structure		++	++
fits to systems containing complex components	+	++	
reusability of knowledge	0		++
fits to diagnosis of unknown faults		a) b) -	+
is readily available at product launch	0	a) b) -	++
provable reliability of diagnoses	+	a) o b)	++