
Applications of Artificial Intelligence

Sebastian Iwanowski
FH WedelFH Wedel

Chapter 4:
Knowledge-Based Systems

4 3: Case Based Reasoning4.3: Case-Based Reasoning

FH Wedel Prof. Dr. Sebastian Iwanowski AAI43 slide 1



2. Case-Based Diagnosis

• Cases with complete symptom vector and associated faults (classified unambiguously)

Input to knowledge base:

• Cases with complete symptom vector and associated faults (classified  unambiguously)

a) Classical AI, with similarity measure:

• Similarity measure for incomplete symptom vectors (often weighted between different 
types of symptoms) 

Points in vector space

Structure of knowledge base:
• Points in vector space

• Similarity measure

Job of inference engine:
• For a new vector given, find the most similar symptom vector of the knowledge base.
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• Assign the same fault to the new vector as associated to the reference vector in the 
knowledge base (possibly with a probability value).



2. Case-Based Diagnosis

• Cases with complete symptom vector and associated faults (classified unambiguously)

Input to knowledge base:

b) with neural networks:

• Cases with complete symptom vector and associated faults (classified  unambiguously)

• Neural network with input layer (for symptom vector) and output layer (for faults)
and (optionally) intermediate layer of nodes and edges, marked by variable weights. 

• Points in vector space

Structure of knowledge base:
• Points in vector space

• Neural network with clearly defined weights
(dependent on trained symptom vectors and associated faults)

Job of inference engine:
• Apply new symptom vector to the input layer of the network.
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• Read the associated fault from the output layer.



Case-Based Reasoning (CBR)
Generalisation of case-based diagnosis to arbitrary
case-based reasoning strategies:g g

• Given cases as vectors (complete symptom vectors): These are “learnt” and build the

Principle:

Given cases as vectors (complete symptom vectors): These are learnt  and build the 
knowledge base.

• Given new vectors, of which not all parameters are known (incomplete symptom vectors): 
These are to be classifiedThese are to be classified. 

• Assign values to the unknown parameters.

Job of inference engine (simple variant):
• For the new vector, find the closest symptom vector learnt by the knowledge base.

• For the unknown parameters of the new vector, assign the same values as in the associated 
symptom vector learnt by the knowledge base.
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This method only makes sense when the unknown values come from a 
discrete (better finite) domain !



Case-Based Reasoning (CBR)
Improvement for continuous value domains:
J b f i f i (b tt i t)Job of inference engine (better variant):
• For the unknown parameters of the new vector, assign values “in between” values of 

“nearby” symptom vectors learnt by the knowledge base.

Other mathematical formulation of this method:
• Consider the unknown parameters of the new vectors as function values of the known 

parameters: Find a continuous function where all vectors learnt by the knowledge base are 
contained.

• Of this function, assign the function values of the known parameters to the unknown 
parametersparameters.

How do we get an appropriate function for a given set of
reference vectors?

Query:

• Take a class of functions, each function differing by certain parameters.

reference vectors?
Answer:
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• Determine the parameters solving an equation system obtained from the known reference 
vectors.



Case-Based Reasoning (CBR)
Determining parameters in function classes (regression):

Linear regression:
• Find the weights in a linear function of the form: 
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Generalisation:
1. Find the weights in a linear equation system.

2. Find the weights in linear equation systems of higher order.

3. Find the weights in parametrised inequality systems.

• Case-based reasoning is designed for systems which cannot be 
modeled easily.

• This is why a higher order equation system does not make sense.

• It is better to work with many weakly connected equation systems and
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It is better to work with many weakly connected equation systems and 
distribute the unknown knowledge.



Case-Based Reasoning (CBR)
Idea of neural networks:

fGiven a multi-valued function (notation: )),,,( 21 ni xxxf 

Input values
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Output values
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• The weights may be preset but are adapted to the examples learnt.

Weights
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• Function values of new inputs are obtained applying the neural network.



Case-Based Reasoning (CBR)
Functionality of a single neuron:
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• g is a generalised threshold function which is the same for all outputs of the same neuron.
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Case-Based Reasoning (CBR)
Different layered neural networks:

Neral networks without intermediate layers:
• Neurons of the first layer accepting the inputs are connected to neurons of the second 

layer providing the outputslayer providing the outputs.

N l t k ith i t di t lNeural networks with intermediate layers
• Input and output layers are connected by further “hidden” intermediate layers.

Neural networks with feedback:
• Generation of “memory”
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Case-Based Reasoning (CBR)
What is the crucial difference between neural networks and
„classical“ CBR systems?„ y

 Neural networks distribute the knowledge about the cases learnt.

Theoretical advantages of distribution:

• Arbitrariness of function class chosen does not play such an important role.

• Intransparent cases are handled by an intransparent method:
The distributed method is “self-adjusting”The distributed method is self adjusting .

Practice shows:

• Good neural networks need fewer training cases than classical CBR systems.

• Neural networks provide better classification results
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• Neural networks provide better classification results.



Neural networks and AI

Are neural networks knowledge-based ?

Are neural networks expert systems ?Are neural networks expert systems ?

What may be called „Artificial Intelligence“ ?
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Summary: Case-Based Reasoning

Advantages and Disadvantages: 

• The method is simple.

- The diagnosis of the run time component is very fast.

- Knowledge acquisition can easily be automatisedKnowledge acquisition can easily be automatised.

- The knowledge base can only be generated for systems where 
experience is given

- The knowledge base consumes a lot of storage (similarity measure only).

experience is given.
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Summary: Case-Based Reasoning

Advantages and Disadvantages: 

• The knowledge base does not contain any other structural 
knowledge than the similarity measure or the NN.

- All application domains are equally suited.

The same inference engine may be applied for totally different application domains

- Even with a small change of the system, the knowledge base cannot be used reliably.

- The same inference engine may be applied for totally different application domains. 

- Each run time diagnosis may be wrong

- Similarity measure and neural network are arbitrary.

Each run time diagnosis may be wrong.

- The result is not comprehensible (at least for neural networks).
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