Applications of Artificial Intelligence

Sebastian Iwanowski FH Wedel

Chapter 4: Knowledge-Based Systems

4.1: Representation and Classification of Knowledge

Representation of knowledge: How ?					
knowledg	e +	problem solver	=	WBS	
data	processing rules	5			
logic know	ledge:				
atoms	rules	derivative rules			
facts	if then	resolution, unification			
functional l	knowledge:				
data	funktions	function evaluation			
object-orie	nted knowledge:				
objekts	methods	compiler / interpreter			
deklarative	procedural	conrol	kno	wledge	

FH Wedel Prof. Dr. Sebastian Iwanowski AAI41 slide 2

The following criteria are mutually independent:

- deep vs. shallow (consider how a statement is composed of smaller units) model-based vs. universally valid
- certain vs. uncertain (consider the probability of a statement)
 deterministically vs. probabilistically
- exact vs. fuzzy

(consider the <u>accuracy</u> of a statement)

quantitative vs. qualitative

Example for distinguishing probability from accuracy:

•	The train comes in 10 minutes.	certain, exact
•	The train comes in about 10 minutes.	certain, fuzzy
•	The train comes probably in 10 minutes.	uncertain, exact
•	The train comes probably in about 10 minutes.	uncertain, fuzzy
•	The probability that the train comes in 10 minutes is 0.9.	uncertain, exact
•	The plausibility range of the hypothesis that the train comes in 10 minutes	is in (0,05; 0,95).
		uncertain, exact

Fuzzy sets as example for qualitative knowledge

Fuzzy sets as example for qualitative knowledge

The linguistic variable "temperature"

Fuzzy sets as example for qualitative knowledge

Fuzzy sets as example for qualitative knowledge

Examples for fuzzy operators:

 μ_C(x) = min {μ_A(x), μ_B(x)} 	$\mathbf{X} \in \mathbf{X}$
• μ _C (x) = max {μ _A (x), μ _B (x)}	$\mathbf{X} \in \mathbf{X}$
• μ _C (x) = 1 - μ _A (x)	$x \in X$

Fuzzy sets as example for qualitative knowledge

you can have it more complicated:

• $\mu_{C}(\mathbf{x}) = \gamma \min\{\mu_{A}(\mathbf{x}), \mu_{B}(\mathbf{x})\} + \frac{1}{2}(1 - \gamma)(\mu_{A}(\mathbf{x}) + \mu_{B}(\mathbf{x})) \ (\gamma \in [0, 1])$

What does this function compute ?

Fuzzy sets as example for qualitative knowledge

Example for fuzzy rules:

if	(distance = small)
and	(velocity = large),
then	(braking power = large)
if	(distance = medium)
and	(velocity = large),
then	(braking power = medium)

Representation of temporal knowledge

Allen's interval logic for the qualitative representation of time intervals

- 1. STARTS(t1,t2)
 - t1 starts with t2 but ends before t2
- 2. FINISHES(t1,t2)

t1 ends with t2 but starts after t2

3. DURING(t1,t2)

t2 contains t1 completely

4. BEFORE(t1,t2)

t1 starts before t2, and t1 and t2 do not overlap or contain each other

5. OVERLAP(t1,t2)

t1 starts before t2 and ends after the start of t2 and before the end of t2

6. MEETS(t1,t2)

t1 starts before t2 and ends when t2 starts

7. EQUAL(t1,t2)

t1 and t2 denote the same interval

Representation of spatial knowledge

exact knowledge

- geo coordinates
- relative distance of objects in m

qualitative knowledge

- relative orientation (west of, ...)
- relative order (in front of, behind, left of, right of, etc.)

Practical problem for temporal and spatial knowledge:

How exact should the knowledge be ?

- year, month, day, hour, second, millisecond, ...
- country, city, address, exact geo coordinates, ...

Summary:

knowledge representation and classification

Various forms of knowledge representation

- frames, semantische networks
- logic, production rules
- constraints

Various qualities of knowledge

- deep vs. shallow (consider how a statement is composed of smaller units)
- certain vs. uncertain (consider the probability of a statement)
- exact vs. fuzzy (consider the <u>accuracy</u> of a statement)