
Applications of Artificial IntelligenceApplications of Artificial Intelligence

Sebastian IwanowskiSebastian Iwanowski
FH Wedel

Chapter 2:
Logic and Rule-Based Programming

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 1

Features of classical AI solutions

Intelligent creatures are able to process very general knowledge: The more
general, the more intelligent.g , g

The ability to process general knowledge needs general description
languages for data and processeslanguages for data and processes.

The most general description language is the language of
mathematical logics.

This is why traditional AI implementations work with logicy p g
description languages.

Problems: • The tasks are usually formulated in a different way.

• There is a trade-off between generality and efficiency.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 2

g y y

Base Technology: Logic Programming Language

• Input:
S ifi ti f th bl ith l i l d i ti lSpecification of the problem with a logical description language

• Output:
Response in a logical description language

• Automatically (without specifying algorithms!):Automatically (without specifying algorithms!):
Generation of output from input

• For improvement of efficiency:
Different specifications of the problem are possible and may
influence the output if the automatic generation procedure is well

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 3

influence the output if the automatic generation procedure is well-
understood

Propositional formulae

• A propositional formula is a combination of finitely many literals
with operators of propositional logics.

• The literals are variables which may assume exactly one of two values.

• The instantiation of a formula is an assignment of values true or
false to all literals such that the same literals achieve the same value.

• A formula is satisfiable if there is an instantiation such that the
formula evaluates to true.formula evaluates to true.

• The satisfiability problem of propositional logics is always solvable
because there are only finitely many combinations in the potential
solution space which may be tested successivelysolution space which may be tested successively.

• Unfortunately, successive testing takes very long time (exponential in the
number of literals). Until now no more efficient algorithm is known.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 4

Problem is NP-complete !

Predicate logics (first order)

Predicate logics extends propositional logics by the following:

• predicates
• propositions depending on variables.

If a proposition depends on k variables, it is called k-ary.

• variables
• correspond to the literals of propositional logics,

• functions
niq e assignments depending on ariables

but may assume one out of a set of arbitrarily many values

• unique assignments depending on variables
(if a function depends on k variables, it is called k-ary)

• 0-ary functions are constants.

• quantors
• existence quantor (∃) und all quantor (∀)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 5

q () q ()

• Quantors must be applied to variables only (otherwise not first order)

Predicate logics (first order)

A predicate logic formula is built by the following rules:

• A term is a variable or a k ary function (using any symbol for the• A term is a variable or a k-ary function (using any symbol for the
function name)

• A formula is a k-ary predicate with arbitrary terms as input or they p y p
conjunction, disjunction or negation thereof.

• A formula may also be a quantor applying to a variable in a formula

Ex.: formula φ = x (R(f(y), g(z,y))  y (P(g(y,z), x)  R(y, z)))
Green occurrences of y and z are free.
Red occurences of variables are bound.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 6

Predicate logics (first order)

• The instantiation of a formula is an assignment of values to the
free variables from predefined domains of definition such thatfree variables from predefined domains of definition such that
the same variables achieve the same values.

• A formula is satisfiable if there is an instantiation such that the
formula evaluates to true.

• In predicate logics, the satisfiability problem is not decidable, i.e. no
algorithm may ever exist to decide for an arbitrary formula as input if
the formula is satisfiable or not.

The general problem is unsolvable !

the formula is satisfiable or not.

Is there a work-about ?
Yes, solve a more specific problem !

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 7

p p

Logic programming languages

Design of an algorithm capable to solve a
bl f l t d i iti l l i

Goal:
Due to the previous statement,
the problem must belong to aproblem formulated in propositional logics. the problem must belong to a
special class !

Advantage:



d a tage
Logic programming reduces to specification of a problem in propositional
logics using a certain set of expressions.

• The general solution is not adapted to any specific problem and may thus be inefficient.

• This spares with the design of algorithms for specific problems. 


Key technique to enable a general solution:

 resolution (p ⋁ q) ∧ (r ⋁ ¬q) ⇒ (p ⋁ r)
generation of a resolvent

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 8

• In the worst case, this is no advantage to pure enumeration of all possibilities.

Logic programming languages

Original goal: Construction task
less than ever not decidable
f bit f l

Task for the interpreter:

Original goal: Construction task
Given a set ℱ of logic formulae. Determine all formulae that can be logically derived from ℱ .

for arbitrary formulae

Easier goal: Verification task
Given a set ℱ of logic formulae and a (new) logic formula F.
Find out if F can be derived from ℱ

not decidable for arbitrary formulae

Find out if F can be derived from ℱ .

Problems equivalent to the verification task:
1) Given a set ℱ of logic formulae and a (new) formula F. Find out if the set {¬F} ∪ ℱ is

contradictory.

2) Given a set ℱ of logic formulae. Find out if it is contradictory.) g y

Chances to simplify the problem:

not decidable for arbitrary formulaeCorresponds to satisfiability problem:

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 9

Chances to simplify the problem:
Restrict the class of admissible formulae !

Logic programming languages
Method 1: Finding a contradiction using resolution
Task:
Given a set ࣠ of predicate logic formulae without quantors: Determine whether it is contradictory.

Method:
Try to derive the constant ⊥ from ࣠ using logic implications.

Principle of resolution:
Generate a new formula being an implication of two given ones:

Principle: Find a literal c ocurring in one formula as a ∨ c and in a different formula as b ∨ ¬c.

Then c may be eleminated: (a ∨ c) ⋀ (b ∨ ¬c) → (a ∨ b)Then c may be eleminated: (a ∨ c) ⋀ (b ∨ ¬c) → (a ∨ b)

The new formul is called resolvent of the old formulae.

Such eliminations may isolate single literals:

Bsp.: (a ∨ c) ⋀ ¬c → a Interpretation: a must hold in ࣠.

If you happen to isolate the negation too, you get a contradiction: contradiction!

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 10

Bsp.: (¬a ∨ d) ⋀ ¬d → ¬a Interpretation: ¬a must hold in ࣠.

Logic programming languages
Method 2: Reduce the variety of terms using unification

Example:

Φ = {P (x, f (y)) , P (z, f (g (z)))}

Query: Under which condition may this set of formulae be contradictory ?

Answer: Identify the predicates P (x, f (y)) und P (z, f (g(z)))
using a proper choice for y and z.g p p y

Mere resolution may not discover this!

A logic programming language needs the ability of unification:
Replace variables by terms such that two predicates become equal.p y p q

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 11

Logic programming languages

Substitution:

Method 2: Reduce the variety of terms using unification

The substitution [x/t] applied to φ denotes the formula derived from φ,
if all free occurrences of x in φ are substituted by term t.
Analogously one may define the simultaneous substitution [x1/t1 x2/t2 xn/tn]Analogously, one may define the simultaneous substitution [x1/t1, x2/t2, ..., xn/tn].

Notation:  = [x1/t1, x2/t2, ..., xn/tn] denotes a substitution
(indepedent of the formula applied to)

  is the application of substitution  to formula 

Example: formula:  = P (f (x), y)
substitution:  = [x/z, y/f (z)]

Definition:

application:   = P (f (z), f (z))

A substitution  unifies formulae 1 und 2, if the following holds: 1 = 2.

Example:

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 12

Example:
The predicates Q (f (x), v, b) and Q (f (a), g (u), y)
are unified by substitution  = [x/a,v/g(u), y/b]

Logic programming languages

Theorem (Existence):
Method 2: Reduce the variety of terms using unification

For two predicate expressions there is either a most general unifying substitution
which is unique except for renaming variables, or the expressions cannot be unified at all.
Theorem (Computability):eo e (Co putab ty)
There is an algorithm proving either the non-unifiability of two expressions or finding the most
general unifying substitution.

Algorithm for predicate expressions:
Repeat until predicates are equal or non-unifiability is proven:

If predicate names are different or the number of parameters is different

rather simple !

If predicate names are different or the number of parameters is different
 not unifiable

Else
Choose a variable x in first or second predicatep

and a term t in the other predicate
being at the same parameter position and not containing x.

If this is not possible
 not unifiable

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 13

 not unifiable
Else

Replace x in both predicates by t.

Logic programming languages

Exercises for unification:

Method 2: Reduce the variety of terms using unification

Exercises for unification:

P (x) and Q (y)

P () d P ()P (x, y) and P (z)

P (x, y) and P (a, f (a))

P (x, y) and P (f (z), g(z))

P (x, f (x, x), z, f (z, z)) and P (f (a, a), y, f (y, y), u)

P (x, f (y)) and P (z , f (g(z))

P (x, x) and P (f (y), f (g(z))

P (x, f (x)) and P (y, y)

P (x, a) and P (b, x)

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 14

(,) (,)

The logic programming language PROLOG
Principle of PROLOG:

PROLOG t i t d i t di ti t (id d f l)PROLOG tries to derive a contradiction to a query (considered as a new formula)
and a knowledge base (considered as a given formula in conjunctive normal form)

using resolution and unification.

Theorem (completeness with respect to contradictions):

If the system of formulae is contradictory, this may always be discovered.

What is missing ?

Theorem (proving the derivation of a new formula):

If one can find a contradiction to a certain system of formulaeIf one can find a contradiction to a certain system of formulae,
one can prove for such a system and each new formula derivable from that system,
that the new formula is a derivation from that system.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 15

What is missing here ?

The logic programming language PROLOG

How can we make PROLOG to be complete ?

By restriction to the input !

PROLOG only accepts formulae of the following form:

p ∧ q ∧ . . . ∧ r → x In the proposition there may only be a setp q
rules (Horn clauses)

In the proposition, there may only be a set
of positive variables.

Theorem (Completeness of resolution for Horn clauses):

For each set of given Horn clauses and a new Horn clause one can decide after finite time For each set of given Horn clauses and a new Horn clause one can decide after finite time
whether the new clause is implied from the old clauses or not

Remark: „Finite time“ may be „very long“ !




FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 16

The logic programming language PROLOG
How can we detect if a set of formulae is eqquivalent to a
set of Horn clauses ?

Denote the input formula set in conjunctive normal form. Interpret the clauses to be the
i di id l f lindividual formulae.
By definition, each formula is a Horn clause, if it is equivalent to a rule where the proposition
contains positive variable only.

A Horn clause always looks as follows:

¬p ∨ ¬q ∨ . . . ∨ ¬r ∨ x At most one variable is positive.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 17

Literature for Prolog
Textbooks:
Ivan Bratko: PROLOG, Programming for Artificial Intelligence,

2 d Editi P 1990 ISBN 0 201 41606 92nd Edition, Pearson 1990, ISBN 0-201-41606-9
3rd Edition, Pearson 2001, ISBN 0-201-40375-6
4th Edition, Pearson 2011, ISBN 0-321-41746-6
Companion website with Prolog code: www.pearsoned.co.uk/bratko

P. Blackburn, J. Bos, K. Striegnitz: Learn Prolog Now!,
Texts in Computing Vol. 7, King's College Publications. 2006, ISBN 1-904987-17-6.
Companion website with on line version: www learnprolognow org

p g p

Companion website with on-line version: www.learnprolognow.org

Peter Bothner / Wolf-Michael Kähler: Programmieren in PROLOG,
Eine umfassende praxisgerechte Einführung,
Vi 1991 ISBN 3 528 05158 2Vieweg 1991, ISBN 3-528-05158-2

Seminar presentation (in German):
Max Rohde: Eignung logischer Programmiersprachen für Spiele-KI am Beispiel Prolog,

FH Wedel, Iwanowski, SS 2007, Informatik-Seminar zur Spiele-KI
gibt auch einen Überblick über Prolog und enthält weiterführende Literaturliste

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 18

gibt auch einen Überblick über Prolog und enthält weiterführende Literaturliste

Elements of PROLOG

Elementary components:

• atoms

• numbers
Integer and real numbers are distinguished (1 ≠ 1.0).

• atoms

• variables
name where the first character is a small literal

• lists
name where the first character is a capital literal, exception: _

[] or [term | list][] or [term | list]
short notation: [1,2,3,4] for [1 | [2 | [3 | [4 | []]]]]

• terms

• predicates
terms of the type atom(term) atom(term term) or

numbers, atoms, variables, lists or expressions like atom(term), atom(term,term) or ...

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 19

terms of the type atom(term), atom(term,term) or ...
2 predicates are equal, if their name is the same atom and the number of
parameters is the same.

Elements of PROLOG

Logic operators between predicates:

• conjunction
a , b corresponds to: a ∧ b

• implication
a :- b corresponds to: b → a

• equivalence
a b corresponds to: b a

• antiequivalence (exor)

a = b corresponds to: b ↔ a

a \= b corresponds to: b ↮ a

• version-specific operators for comfort

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 20

not, member, length, ...

Elements of PROLOG

Arithmetic operators

• +, -, *, /, div, mod
Arithmetic expressions are always formed in infix notation.

Evaluation of arithmetic expressions

• not automatically!

• when a variable is assigned an expression
varname is arithmetic expression
weist der Variable Varname das Ergebnis des arithmetischen Ausdrucks zuweist der Variable Varname das Ergebnis des arithmetischen Ausdrucks zu.

• using special logic operators with evaluation capability

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 21

<, =<, > >=. =:=, =\= evaluate arithemtic expressions on either side.
(in some implementations only on one side)

Elements of PROLOG

Knowledge in form of clauses

• facts
predicate.
S h di t d t b t i th k l d b

• rules

Such predicates are assumed to be true in the knowledge base.

predicate :- conjunction of predicates.
The concluding predicate (on the left) is considered true
if the proposition (on the right) has to be assumed true.
F th l di di t th b diff t lFor the same concluding predicate there may be different rules.

• queries
?- conjunction of predicates.
Prolog tries to derive the truth of a query from the known facts and rules.
If this derivation is successful, the answer is yes and the values

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 22

If this derivation is successful, the answer is yes and the values
necessary to bind on a variable for the verification are output.
Otherwise the answer is no.

Functionality of a PROLOG interpreter

PROLOG is knowledge-based:

• Knowledge base
Facts and rules, dynamically extensible

• Inference engine

deriving facts and rules automatically using the inference
techniques resolution und unification

• Dialog component

Input: Query
O t t / S ifi ti f d ifi ti i f itOutput: yes / no, Specification of used unification in case of success, write as a
„side effect“

Yes: The predicate of the query can be concluded from knowledge base.

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 23

Yes: The predicate of the query can be concluded from knowledge base.
No: The predicate of the query cannot be concluded from knowledge base.

No does not imply that it can be concluded that the predicate is false.

Functionality of a PROLOG interpreter

How the inference engine works:

• Decomposition of a goal into subgoals
First goal is the original query.
Prolog tries to achieve the goal with unifications of the predicates of the knowledge baseProlog tries to achieve the goal with unifications of the predicates of the knowledge base.
This makes the predicates to subgoals.

• Order of evaluation
All data of the knowledge base are evaluated from top to bottom.
Conjunctions of rule propositions are evaluated from left to right.
The evaluation order does not distinguish between facts and rules.

• Instantiation of variables
Variables are instantiated with values only for the sake of unification.
Th t i t ti ti i d ft d fi it f il f ifi ti ith thi lThe current instantiation is removed after definite success or failure of unification with this value.

• Backtracking
Failure of a unification automatically initiates a new instantiation

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 24

Failure of a unification automatically initiates a new instantiation.
Deep backtracking: Try a different value for the same clause.
Shallow Backtracking: Try to achieve a different clause for the same predicate.

PROLOG: Simple example
• Predicate world from first semester:

Knowledge base:
Declarative alternative
without problems with
symmetric predicates: XSB
htt // b f t/father(sven,georg).

brother(holger,anna).
married(sven, anna).

http://xsb.sourceforge.net/

male(X) :- father(X,Y).
male(X) :- brother(X,Y).

uncle(X,Y) :- father(Z,Y), brother(X,Z).
uncle(X,Y) :- mother(Z,Y), brother(X,Z).
mother(X,Y) :- father(Z,Y), married(X,Z).
female(X) : married(X Z) male(Z) better:

In ISO-Prolog this does not work!

female(X) :- married(X,Z), male(Z).
married(X,Y) :- married(Y,X).

Queries:

isMarried(X,Y) :- married(X,Y).
isMarried(X,Y) :- married(Y,X).

better:

?-female(anna).
?-male(georg).
?-uncle(holger,georg).

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 25

?- isMarried(holger,X).
(g g g)

?-male(X).
?-married(holger,X).

PROLOG: More complicated example
• 8 queens problem (1st solution of Bratko)

Knowledge base:
queens1([]).

queens1([X/Y | Others]) :-
queens1(Others),
member(Y,[1,2,3,4,5,6,7,8]),
conflictFree(X/Y,Others).

conflictFree(_,[]).

conflictFree(X/Y, [HeadX/HeadY | Others]) :-
Y =\= HeadY,
DiffY is HeadY - Y, not: DiffY =:= HeadY-Y
DiffY =\= HeadX - X,
DiffY =\= X - HeadX,
conflictFree(X/Y,Others).

not: HeadY - Y =\= HeadX-X

template([1/Y1,2/Y2,3/Y3,4/Y4,5/Y5,6/Y6,7/Y7,8/Y8]).

Query:

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 26

y
?-template(S), queens1(S).

Use of Prolog
Didactic use:

• good exercise for dealing with formal logics

• exercising recursive formulations of problems and algorithms

Practical use:

• good for a quick test of concepts (rapid prototyping)

• relatively comfortable for simple problems for which no other solution
exists than exhaustive search of all possibilities

• suitable for successive and systematic output of all possible
solutions of a search problem

Limits:

• Rather a toy than a tool of commercial use, too far from practical needs

FH Wedel Prof. Dr. Sebastian Iwanowski AAI2 slide 27

• totally useless if efficiency of solution is relevant

