
Algorithmicsg

Sebastian Iwanowski
FH W d lFH Wedel

4. Graph algorithms
4.3 Computation of maximum flows in s/t-networks

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 1

Algorithmics 4
4.3 Computation of maximum flows in s/t-networks
Notation

Complete directed graph (V,E) with nonnegative edge capacities c(e) for all edges e

Def.: s/t-network (q/s-Netzwerk):

p g p (,) g g p () g
and a selected source vertex s (Quelle q) and a selected target vertex t (Senke s)

Def.: flow f: function E→ℕ where
f() ≤ () f ll d• f(e) ≤ c(e) for all edges e

• f(u,v) = - f(v,u)
• For all vertices v ≠ s,t the following holds:

The sum of all flows from v to all neighbors is 0The sum of all flows from v to all neighbors is 0.

Def.: value |f| of a flow:

net flow out of s resp. net flow into t (both values must be equal)

References:
Cormen ch 26 1 (flow networks)

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 2

Cormen, ch. 26.1 (flow networks)
Alt, Kap. 4.5.1
Turau, Kap. 6.1 (siehe auch Ausarbeitung und Vortrag Seminararbeit Claudia Padberg)

Algorithmics 4
4.3 Computation of maximum flows in s/t-networks
Notation
Def.: Augmenting path (Erweiterungsweg) of a flow f:

Path vom s to t where the following holds for each edge (u,v): f(u,v) < c(u,v)
The value c(u v) – f(u v) is called the remainder capacityThe value c(u,v) – f(u,v) is called the remainder capacity.

Def.: Residual network (Restegraph, Restnetz) Gf:

Note: f(u,v) may be negative which means that f(v,u) > 0.
In this case, f(v,u) = c (v,u) is permitted.

Def.: Residual network (Restegraph, Restnetz) Gf:
For each edge (u,v) with positive remainder capacity in G, insert an edge (u,v) ∈ Gf
where the capacity is equal to that remainder capacity.
For each edge (u v) with positive flow f(u v) in G insert an edge (v u) ∈ GFor each edge (u,v) with positive flow f(u,v) in G, insert an edge (v,u) ∈ Gf
where c(v,u)= f(u,v)

Prop. 1: A path p is an augmenting path in G ⇔ p is a directed path from s to t in Gf

Prop 2: A flow f may be increased by the residual flow (Restfluss) whose value is the

References:
Cormen ch 26 2 (Ford Fulkerson method)

Prop. 2: A flow f may be increased by the residual flow (Restfluss) whose value is the
minimum capacity of a directed path from s to t in Gf.

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 3

Cormen, ch. 26.2 (Ford-Fulkerson method)
Alt, Kap. 4.5.2
Turau, Kap. 6.1, 6.3 (Restegraph) (siehe auch Ausarbeitung und Vortrag Seminararbeit C. Padberg)

Algorithmics 4
4.3 Computation of maximum flows in s/t-networks
Notation

Def.: s/t-cut (X,Y) (q/s-Schnitt):
Partition of vertices in G such that s ∈ X und t ∈ Y

Def.: capacity c(X,Y) of an s/t-cut:
Sum of all capacities c(u,v) where u ∈ X and v ∈ Y

Prop 1 F h /t t (X Y) th f ll i h ld |f| f(X Y)

Def.: flow f(X,Y) of an s/t-cut:
Sum of all flows f(u,v) where u ∈ X and v ∈ Y

Prop. 1: For each s/t-cut (X,Y) the following holds: |f| = f(X,Y)

Prop. 2: |f| ≤ min {c(X,Y); (X,Y) is s/t-cut}

References:

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 4

Cormen, ch. 26.2 (Ford-Fulkerson method)
Turau, Kap. 6.1 (siehe auch Ausarbeitung und Vortrag Seminararbeit Claudia Padberg)

Algorithmics 4

Max-flow min-cut theorem (Ford-Fulkerson theorem)

4.3 Computation of maximum flows in s/t-networks
()

The following propositions are equivalent:
• f is a maximum flow in G
• There is no augmenting path for f in G

• There is an s/t-cut (X,Y) where |f| = c(X,Y)

Proof:

Circular argument:
1) => 2) trivial1) > 2) trivial
2) => 3) will be shown in class (according to Cormen)
3) => 1) follows by Prop.2 of last slide

References:

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 5

Cormen, ch. 26.2 (Ford-Fulkerson method)
Turau, Kap. 6.2 (anderer Beweis)

Algorithmics 4

Algorithm of Edmonds-Karp: (using the notation of Skript Alt)

4.3 Computation of maximum flows in s/t-networks
g p

1) Initialize f by 0 for all edges.
Repeat

2a) Compute residual graph Gf

(g p)

2b) Find augmenting path in Gf with breadth first search
3) Increase f by the residual flow of the augmenting path (Prop. 2, slide 3)

until no augmenting path exists

Correctness:

Time complexity:
follows by Ford-Fulkerson theorem
O(nm2)

Outline of time complexity proof:Outline of time complexity proof:
Each operation of type 2a), 2b) and 3) costs time O(m) (easy to see)
There are O(nm) loop iterations:
Each augmenting path has got a critical edge. Each edge can be critical at most O(n) times.

References:
Cormen ch 26 2 (Ford Fulkerson method)

g g p g g g ()
There are m edges.

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 6

Cormen, ch. 26.2 (Ford-Fulkerson method)
Alt, Kap. 4.5.4
Turau, Kap. 6.3 (mit Pseudocode) (siehe auch Seminararbeit Claudia Padberg)

Algorithmics 4

Algorithm of Edmonds-Karp:

4.3 Computation of maximum flows in s/t-networks
g p

Let δf(u,v) be the minimum number of edges between u and v in the residual network GfDef.:

Details of time complexity proof:

Each path in a graph found by breadth first search starting at a source s
has got the minimum number of edges

Lemma 1:

For a breadth first search, a source s and a target t, the following holds:

has got the minimum number of edges.
For each edge (u,v) of a path Pf in the residual network Gf found by breadth first search,
The following holds: δf(s,v) = δf(s,u) + 1

Lemma 2:

Let f f be two flows subsequently generated by Edmonds Karp:L 4 5 8 / 26 8 Let f1, f2 be two flows subsequently generated by Edmonds-Karp:
Then for all v ≠ s,t: δf1(s,v) ≤ δf2(s,v)

Lemma 4.5.8 / 26.8:
(Monotonicity)

Each edge will be at most n/2 times a critical one.Lemma 4.5.9 / 26.9:
(O() th)

References:
Cormen ch 26 2 (Ford Fulkerson method)

(O(n) theorem)

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 7

Cormen, ch. 26.2 (Ford-Fulkerson method)
Alt, Kap. 4.5.4
Turau, Kap. 6.3 (anderer Beweisaufbau und Notation)

Algorithmics 4

Algorithm of Edmonds-Karp:

4.3 Computation of maximum flows in s/t-networks
g p

Let for v ≠ s,t the following hold: δf1(s,v) > δf2(s,v)

Proof of Lemma 4.5.8:

L t b th d ith t (*) h i i i l di t f i G
(*)

Let v be the node with property (*) having minimal distance from s in Gf2,
i.e. for all u with δf2(s,u) < δf2(s,v), the following holds: δf1(s,u) ≤ δf2(s,u)
Let P2 be the shortest path from s to v in Gf2, and let u be the predecessor of v on that path.
Thus (u v) ∈ G and u satisfies (**)

(**)

Thus, (u,v) ∈ Gf2, and u satisfies (**).

Consider the following two cases:

a) f1(u,v) < c(u,v).
because v can be

reached via (u,v) in Gf1
(**) because (u,v) is part

of the shortest path in Gf2) 1(,) (,)
This implies: (u,v) ∈ Gf1 => δf1(s,v) ≤ δf1(s,u) + 1 ≤ δf2(s,u) + 1 = δf2(s,v) contradicting (*)

b) f1(u,v) = c(u,v).
This implies: (u,v) ∉ Gf1 Since (u,v) ∈ Gf2, f2(v,u) > 0 and (since (u,v) ∉ Gf1) f1(v,u) = 0
Thus, (v,u) is part of an augmenting path which was used in order to increase f1 to obtain f2.
By Lemma 2, δf1(s,v) = δf1(s,u) - 1 ≤ δf2(s,u) - 1 = δf2(s,v) – 2 < δf1(s,v)

(**) (*)Lemma 2
contradiction !

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 8

In either case, we get a contradiction
which proves that for all v ≠ s,t the following holds: δf1(s,v) ≤ δf2(s,v)

() ()Lemma 2

Algorithmics 4

Algorithm of Edmonds-Karp:

4.3 Computation of maximum flows in s/t-networks
g p

Let (u,v) be a critical edge in an augmenting path for flow f1.

Proof of Lemma 4.5.9:

(**)By Lemma 2, δf1(s,v) = δf1(s,u) + 1 (**)

If (u,v) becomes a critical edge again implies:
(v,u) is in an augmenting path some time in between for a flow f2.

δ (s u) = δ (s v) + 1 ≥ δ (s v) + 1 = δ (s u) + 2

Condider the following:

δf2(s,u) = δf2(s,v) + 1 ≥ δf1(s,v) + 1 = δf1(s,u) + 2

Thus, the distance from u to the source s has increased by at least 2

(**)Lemma 2 Lemma 4.5.8

Thus, the distance from u to the source s has increased by at least 2

This can happen at most n/2 times, because the distance is never greater than n. q.e.d.

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 9

Algorithmics 4

Algorithm of Dinic

4.3 Computation of maximum flows in s/t-networks
g

Def.: Level graph Lf: (Turau: Niveaugraph G‘f)

Notation:

Def.: blocking flow:

Delete all edges (u,v) from Gf where δf(s,v) ≤ δf(s,u)

A flow where each path from s to t has got a critical edge.

Theorem: f is maximal ⇒ f is blocking

Theorem: |f‘| = |f| + |r|

Def. (Increase of a flow f by a flow r in Lf):
Let r be a flow in Lf. For each edge e, let f‘(e) = f(e) + r(e) – r(e)

References:
Cormen ch 26 4 (push relabel algorithms)

Theorem: |f | = |f| + |r|

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 10

Cormen, ch. 26.4 (push relabel algorithms)
Turau, Kap. 6.4 (siehe auch Ausarbeitung und Vortrag Seminararbeit C. Padberg)
Alt, Kap. 4.7

Algorithmics 4

Algorithm of Dinic

4.3 Computation of maximum flows in s/t-networks

1) Initialize f by 0 for all edges.
Repeat

2a) Compute Lf

Difference to Edmonds-Karp:
Maximize each path in the flow, not just one.

g

2a) Compute Lf
2b) Search for a blocking flow r in Lf
3) Increase f by the blocking flow r

until no blocking flow exists (t cannot be reached anymore in Lf from s)

Time complexity: O(n2m)

Outline of time complexity proof:

Improvement in Turau: O(n3)

In each iteration, δf(s,t) is increased by at least 1 ⇒ there are O(n) loop iterations
2a) and b) may be combined with a repeated depth first search: O(nm)
Improvement in Turau: O(n2)

References for the details:
Cormen ch 26 4 (push relabel algorithms: with proof of correctness)

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 11

Cormen, ch. 26.4 (push relabel algorithms: with proof of correctness)
Turau, Kap. 6.4 (siehe auch Ausarbeitung und Vortrag Seminararbeit C. Padberg)
Alt, Kap. 4.7

