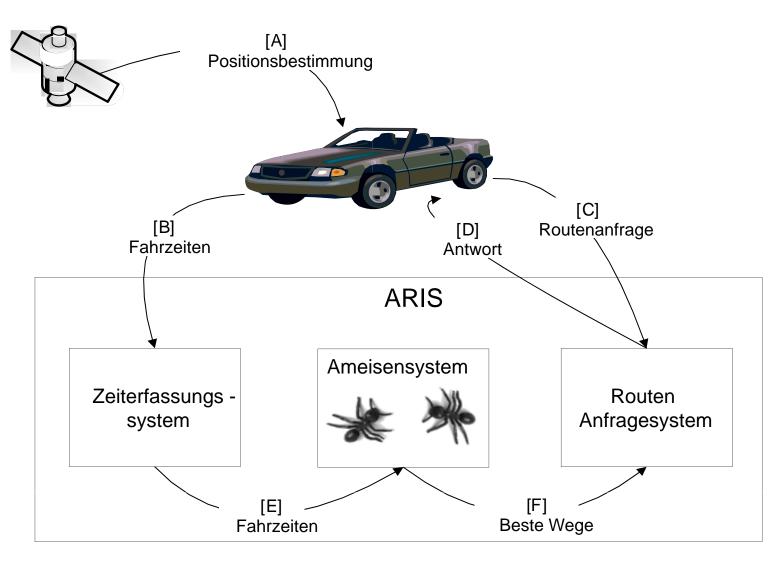
Grundlagen der Künstlichen Intelligenz


Sebastian Iwanowski FH Wedel

Kap. 5: Ameisenalgorithmen

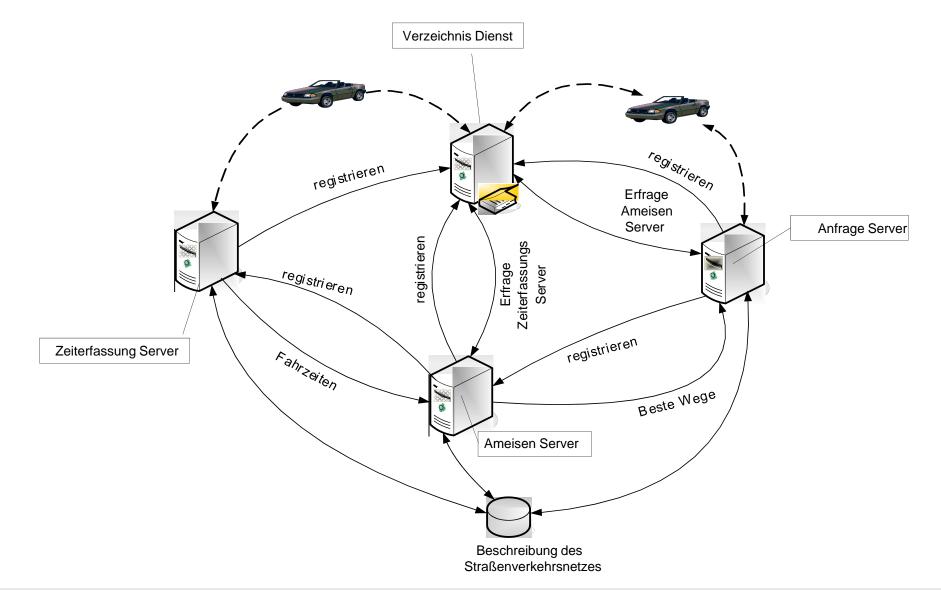
5.2: Anwendung auf Dynamische Verkehrsnavigation

Einige der hier vorgestellten Folien stammen aus früheren Präsentationen von **Thomas Walther**, M.Sc. der FH Wedel

Systemdesign: Systemkomponenten

ARIS = Ameisenbasiertes RoutenInformationsSystem

Systemdesign: Systemkomponenten


Zeiterfassungssystem

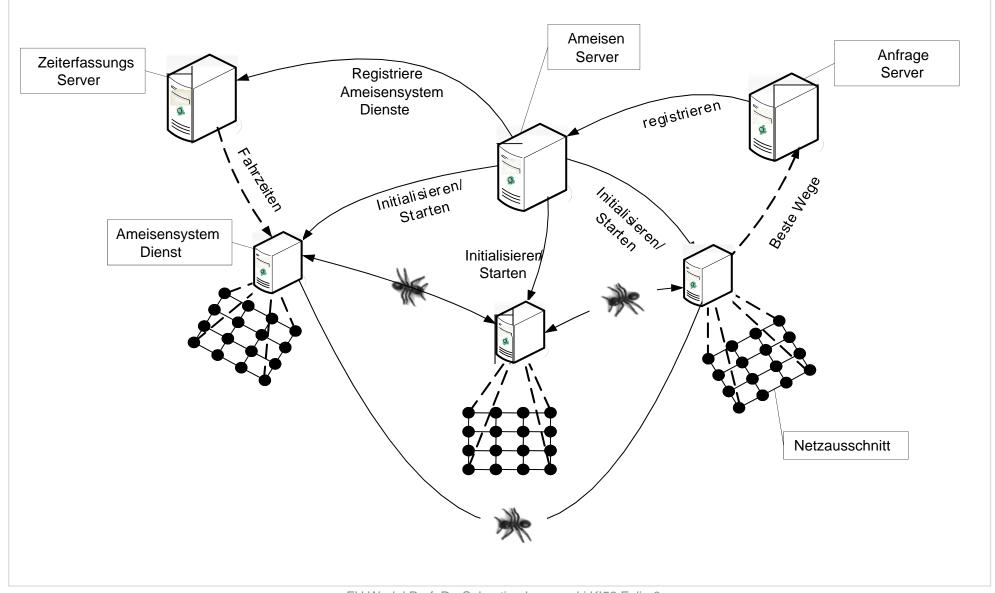
- Abbildung der Verkehrslage für die einzelnen Wegstrecken
- Verschiedene Datenquellen: Induktionsschleifen, Kameras, Fahrzeuge, ...

Fahrzeuge als Datenquelle

- Komplexe Erfassung notwendig
- Problematik geringer Informationsdichten
- Abgelegt werden die gemittelten Fahrzeiten (über ein Zeitfenster)

Systemdesign: Verteilung der Systemkomponenten

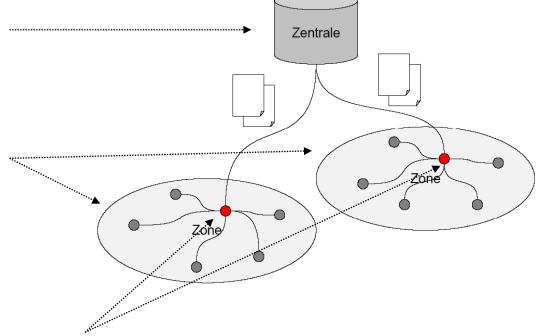
Systemdesign: Verteilung des Ameisensystems


Große Netze sind problematisch:

- Je größer das Netz desto mehr Ameisen benötigt
- Je mehr Ameisen desto größer ist die Rechenlast

Lösung:

- Verteilung der Rechenlast auf gleichartige Dienste
- Begünstigt durch indirekte und lokale Kommunikation


Systemdesign: Verteilung des Ameisensystems

Mobile Nutzung der Pheromontabellen

Hier läuft der Ameisenalgorithmus

Die Pheromone jeder Zone werden an alle Fahrzeuge verteilt, die in dieser Zone fahren.

Nur wenige Fahrzeuge fragen direkt bei der Zentrale nach.

Diskussion und Details in Masterarbeit Michael Suthe

Nutzen gegenüber herkömmlichen Navigationsverfahren

Komprimierte Speicherung der Daten:

- Pheromone speichern die zusammengefasste Situation von vielen Einzelstrecken
- Übertragungsdatenmenge wird dadurch beherrschbar.

Nebenläufige Berechnung der Daten:

- Ameisensystem errechnet die Daten außerhalb der Fahrzeuge
- Dadurch sind größere Rechnerkapazitäten einsetzbar.
- Die Berechnung kann bereits vor der Abfrage erfolgen.

Middleware zwischen Datenerfassung und Datennutzung:

- Dynamische Daten werden vom ganzen Land zentral erfasst und weiterverteilt.
- Die Zentrale fungiert als Middleware zwischen Datensammlern und Datennutzern
- Dadurch erhält man den Vorteil jeder Middleware:
 weniger Kommunikationsaufwand zwischen vielen Providern und vielen Nutzern.

Künstliche Ameisenverfahren (ACO)

Entwicklungen verschiedener Forschergruppen

AntNet

Dorigo M., G. Di Caro & L. M. Gambardella (1999). Ant Algorithms for Discrete Optimization. *Artificial Life*, 5(2):137-172.

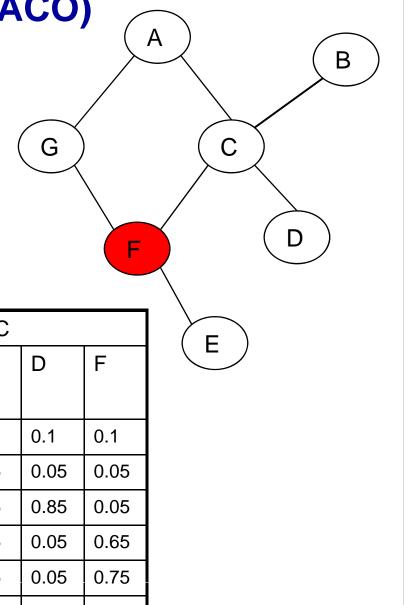
http://iridia.ulb.ac.be/~mdorigo/ACO/ACO.html

Gianni Di Caro, An Introduction to Swarm Intelligence and Metaheuristics for Combinatorial Optimization: lecture slides http://www.idsia.ch/~gianni/my_lectures.html

Ant Based Control (ABC)

- Kroon R., *Dynamic vehicle routing using Ant Based Control*, Master's thesis, Delft University of Technology, 2002.
- R. Schoonderwoerd, O. Holland, and J. Bruten. Ant-like agents for load balancing in telecommunications networks. In *Proceedings of the First International Conference on Autonomous Agents*, pages 209–216. ACM Press, 1997.

Künstliche Ameisenverfahren (ACO)


Grundlage für Wegentscheidung:

Routentabelle für jeden Knoten

Beispieltabellen für 2 Knoten:

Tabelle F				
Next	С	G	Е	
Dest				
Α	0.3	0.65	0.05	
В	0.5	0.35	0.15	
С	0.9	0.05	0.05	
D	0.9	0.05	0.05	
E	0.05	0.05	0.9	
G	0.6	0.35	0.05	

Tabelle C					
Next	А	В	D	F	
Dest					
А	0.7	0.1	0.1	0.1	
В	0.05	0.85	0.05	0.05	
D	0.05	0.05	0.85	0.05	
E	0.25	0.05	0.05	0.65	
F	0.15	0.05	0.05	0.75	
G	0.6	0.05	0.05	0.3	

Künstliche Ameisenverfahren (ACO)

Algorithmischer Ablauf

Vorwärts- und Rückwärtsameisen

Kontinuierliche Generation von Vorwärtsameisen von jeder Quelle zu jedem Ziel

Funktionsweise der Vorwärtsameisen:

- Wahrscheinlichkeitsgesteuerte Wegwahl (gemäß aktuellen Tabellenwerten)
- Sammeln und Merken von Weginformationen (Wegzeiten etc.)
- Starten einer Rückwärtsameise am Ziel

Funktionsweise der Rückwärtsameisen:

- Rückverfolgung des Wegs der Vorwärtsameise
- Aktualisierung der Knoteninformation mit Hilfe der Weginformationen der Vorwärtsameise

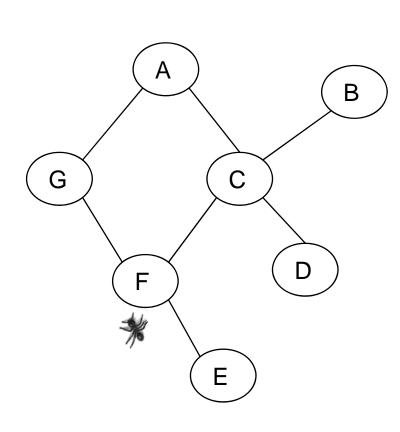
$$\Delta P_{\rm s,d} = \frac{c_1}{t_{\rm s,d}} + c_2$$

 $\Delta P_{\rm s,d} = \frac{c_1}{t_{\rm s,d}} + c_2$ Verdampfungskoeffizient: Mit diesem lässt die Rückwärtsameise die Pheromone der anderen Wege "verdampfen" und verstärkt gleichzeitig den eigenen Weg.

Verdampfung der Pheromone

$$P_{d,i} = \frac{P_{d,i}}{1 + \Delta P_{s,d}} \forall i \neq f$$

Erhöhung der Pheromonkonzentration


$$P_{d,f} = \frac{P_{d,f} + \Delta P_{s,d}}{1 + \Delta P_{s,d}}$$

s ... Startknoten der Vorwärtsameise

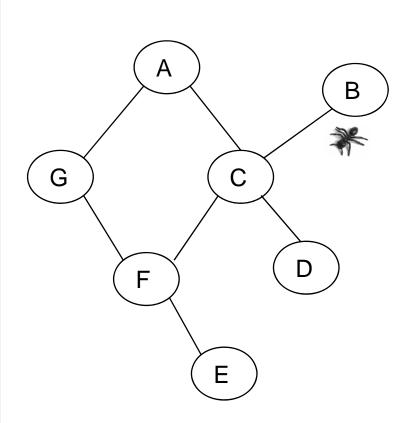
d ... Zielknoten der Vorwärtsameise

f... Knoten über den die Rückwärtsameise den aktuellen Knoten erreicht hat

Verhalten der Vorwärtsameise

Gedächtnis

$$s = F$$
 $d = B$


$$t_{F,C} = 0.5$$
 $t_{C,B} = 1.5$

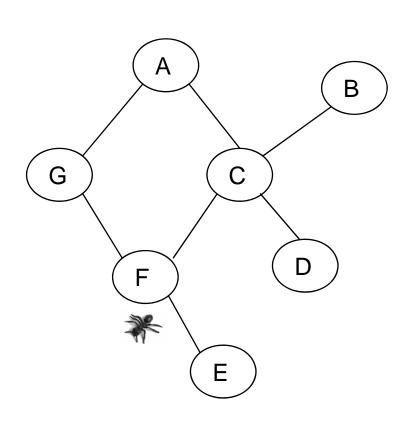
$$t_{C.B} = 1,5$$

Tabelle F (verkürzt)				
Ne Dest	xt C	G	E	
В	0.5	0.35	0.15	

Tabelle C (verkürzt)					
Dest	Next	A	В	D	F
В		0.05	0.85	0.05	0.05

Verhalten der Rückwärtsameise

Gedächtnis


$$s = F$$
 $d = B$

$$t_{F,C}$$
=0,5 $t_{C,B}$ =1,5

Tabelle C (verkürzt)				
Next Dest	А	В	D	F
В	0.05	0.85	0.05	0.05

Pheromonaktualisierung verändert die Tabelle des Knotens C nicht, da als minimaler Wert für jeden Eintrag 0.05 erhalten bleiben soll.

Verhalten der Rückwärtsameise

Gedächtnis

$$s = F$$
 $d = B$

$$t_{F,C}$$
=0,5 $t_{C,B}$ =1,5

Alte Tabelle F (verkürzt)				
	ext	С	G	E
Dest				
В		0.5	0.35	0.15

Neue Tabelle F (verkürzt)				
Next	С	G	E	
Dest				
В	0.83	0.12	0.05	

$$t_{F,B} = 2$$

$$\Delta P = \frac{2}{2} + 1$$

$$P_{\text{new,C}} = \frac{0.5 + 2}{1 + 2} = 0.83$$

$$P_{\text{new,G}} = \frac{0.35}{1+2} = 0.12$$

$$P_{\text{new,E}} = \frac{0.15}{1+2} = 0.05$$