Algorithmics

Sebastian lwanowski
FH Wedel

FE Ctrina Matehinn
I VLIIII& Iv

IVICALWVI T

Algorithmics 5
String Matching

Task: Given a text T = {t,,....t.} with n literals and a pattern P = {p,,...,p,,} With m literals:
Find the starting positions where P occurs in T.

naive algorithm: needs O(nm) time

Algorithm of Knuth-Morris-Pratt: needs O(n) time

Def.: P, denotes the prefix of P consisting of the first q literals.

Def.: The prefix function 1: N\{0} - N for the pattern P is defined as:

m(q) = k & kis the length of the longest strict prefix of P, (sfrict means: k < q)
which is also a Suffix of P,
General method of the KMP algorithm:

For each q £ m, compute the value 11(q) of the prefix function and store it.
Then scan T in only one iteration and shift P at any mismatch in pattern position q

by q - T(q). In class: Why is this correct?
References:

Alt, Kap. 4.8
Cormen, ch. 32 (String matching), esp. 32.4 (KMP)

Algorithmics 5
String Matching

Algorithm of Knuth-Morris-Pratt: needs O(n) time
Implementation of main procedure (version of Cormen):

i:=1; q :=0;

Invariant: q corresponds to an index such that
while i < n do

(T[i-g+1],...,T[i]) coincides with (P[1],...,P[q])

{
while (g>0)and (T[i] # P[g+1l])
g =1 (q); To be considered with this version:
if T[i] = P[q+l] then q := g+l; Why is this algorithm correct?
ifg=m
then
{
print (,Matching at position “, i-m);
q :=n (q);
}
i := i+1l;
}
References:
Alt, Kap. 4.8

Cormen, ch. 32 (String matching), esp. 32.4 (KMP)

Algorithmics 5
String Matching

Algorithm of Knuth-Morris-Pratt: needs O(n) time

Implementation of main procedure (version of Iw):

1:=1;q:=1; Invariant: g corresponds to an index such that

“{'hlle i%ndo (T[i-q+1],..., T[i-1]) coincides with (P[1],...,P[q-1])
if (T[i] = P[q]) or (g = 1)
then i := i+l
else g :=n (g-1)+1;
if (T[i] = P[q]) then g := g+l1;
ifg>m
then
{

Home work:
Why does this algorithm need O(n) time?

print (,Matching at position “, i-m);
q :=n (gq-1)+1;

}
References:

Alt, Kap. 4.8
Cormen, ch. 32 (String matching), esp. 32.4 (KMP)

Algorithmics 5
String Matching

Algorithm of Knuth-Morris-Pratt: needs O(n) time

Implementation of prefix function (according to Cormen/Alt): needs O(m) time

n(l) := 0; _
q :=0; In class:
for i := 2 to m do Why does this algorithm need O(m) time?

{
while (P(g+1l)#P(i)) and (g > 0) do
q := n(q);
if P(g+l)=P (i)
then q := g+1;

n(i) :=q
}
In class:
Why is this algorithm correct?
References:
Alt, Kap. 4.8

Cormen, ch. 32 (String matching), esp. 32.4 (KMP)

