Algorithmics

Sebastian Iwanowski
FH Wedel

4. Graph algorithms
4.4 Computation of graph matchings

Algorithmics 4

Matchings in graphs

Def.: A matching is a set of edges such that no edge is adjacent to another edge.
Def.: maximum matching:
i) maximum number of edges (only this is investigated in the references below)
ii) for valued edges: matching with maximum value

Def.: Set theoretic statement of graph matching (2DM):
Given a set $E \subseteq V x V$: Find a maximal subset $T \subseteq E$ where: All elements of T are pairwise disjoint.
Def.: Generalization of graph matching (kDM):
Given an set $E \subseteq V x \ldots x V$: Find a maximal subset $T \subseteq E$ where: All elements of T are pairwise disjoint.
Theorem: $\quad k D M$ is NP-complete for $k \geq 3$ and 2DM is in P.

References:

Alt, Definition 4.6.1
Laszlo Lovasz / Michael Plummer: Matching Theory, North Holland 1986, ISBN 9630541688, ch. 9.1
James McHugh: Algorithmic Graph Theory, Prentice Hall 1990, ISBN 0130236152, ch. 8.3
Christos Papadimitriou / Kenneth Steiglitz: Combinatorial Optimization, Dover 1998, ch. 10

Algorithmics 4

Matchings in graphs (maximum number of edges)

Special case considered in detail: Matchings in bipartite graphs

Def.: A flow f is integer-valued $\Leftrightarrow \mathrm{f}(\mathrm{u}, \mathrm{v})$ is integer-valued for each edge (u, v)
Def.: For a given bipartite Graph $G=((V, U), E)$, build an s/t-network G^{\prime} with properties:
There is a source $s \in G^{\prime}$ with a directed edge to each vertex of V, each edge having capacity 1 .
There is a target $t \in G^{\prime}$ with a directed edge from each vertex of U, each edge having capacity 1 .
For each edge of G, there is a directed edge from a vertex in V to a vertex in U having capacity 1.
Lemma: $\quad G$ has got a matching where $|M|=k \Leftrightarrow G^{\prime}$ has got an integer valued flow where $|f|=k$ (Alt 4.6.3)
Theorem: Given an s/t-network with integer capacities for all edges:
(Alt 4.6.4, \quad i) Then the value of a maximum flow is an integer as well.
Cormen 26.11) ii) There exists always a maximum flow that is integer-valued.
Proof: i) follows from max flow / min cut theorem
ii) has to be proven separately

Corollary: The maximum matching in G is one-to-one related to the maximum flow in $\mathrm{G}^{\text {'. }}$

References:

Alt, Kap. 4.6
Cormen, ch. 26.3 (maximum bipartite matching)

Algorithmics 4

Matchings in graphs (maximum number of edges)

Algorithms for bipartite matchings und integer valued flows

Prop.: A maximum bipartite matching can be found by the maximum flow algorithm of Edmonds-Karp in O(nm).
(Remark: For integer-valued networks, time complexity is better than for arbitrary networks).

Improvements:

Hopcroft-Karp: $\mathrm{O}\left(\mathrm{n}^{0,5} \mathrm{~m}\right)$
Alt et al.: $\mathrm{O}\left(\mathrm{n}^{1,5}(\mathrm{~m} / \log \mathrm{n})^{0,5}\right)$ (this is an improvement for dense graphs)
Prop.: In unit networks (networks where each edge has got capacity 1),
the algorithm of Dinic needs only $\mathrm{n}^{0,5}$ iterations.
The inner operations do not sum up to $O(n m)$ as in the general case, but only to $O(m)$. Thus, the algorithm of Dinic performed in unit networks requires run time $O\left(n^{0,5} m\right)$.
Corollary: The run time of Hopcroft-Karp for bipartite matching may be achieved also with the algorithm of Dinic.

References:

Alt, Kap. 4.7
Cormen, Problem 26-7
Turau Kap. 7 (vor allem Literaturhinweise 7.6)

