Algorithmics

Sebastian Iwanowski
FH Wedel

3. Solutions for the dictionary problem 3.4 Optimal binary search trees

Algorithmics 3

3.4 Optimal binary search trees

Problem:

i. Let $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a linearily ordered set with predetermined probablities p_{i} for the occurrence of a_{i} und q_{i} für the occurrence of an element a in between: $a_{i}<a<a_{i+1}$.
ii. Construct a binary search tree which minimizes the expected response time (i.e. number of comparisons with elements a_{i}).

Required tree properties:

The tree should not only find the position of elements contained in the given dictionary, but also locate the position where new elements would be placed: Inner nodes correspond to elements contained, leaves correspond to elements in between

Solution by the algorithm of Bellman (1957)

Time for the construction of the search tree: $\mathrm{O}\left(\mathrm{n}^{3}\right)$ (easy to prove)
Improvement: O(n^{2})

References:

Skript Alt S. $65-70$ (ch. 3.3) in German: Other references are less clear
Cormen 15.5 (ch. Dynamic Programming)
Knuth 6.2.2 (Binary Tree Searching)

Bellman's Algorithm for optimal binary search trees:

$T_{i, j}$: subtree for search items greater than a_{i-1} and less than a_{j+1}

Special cases:

$T_{i, i}$: subtree for search items greater than a_{i-1} and less than a_{i+1}.
This tree consist of one node comparing with a_{i}
$T_{i, i-1}$: subtree for search items greater than $\mathrm{a}_{\mathrm{i}-1}$ and less than a_{i}.
This tree is empty and corresponds to a leaf.
$\mathrm{T}_{\mathrm{i}, \mathrm{n}}$: subtree for search items greater than $\mathrm{a}_{\mathrm{i}-1}$
$T_{1, j}$: subtree for search items less than a_{j+1}
$T_{1, n}$: tree for all search items

Bellman's Algorithm for optimal binary search trees:

$T_{i, j}$: subtree for search items greater than a_{i-1} and less than a_{j+1} $r_{i, j}$: index m of the root of $T_{i, j}$: The item to be compared with is a_{m} $P\left(T_{i, j}\right)$: expected costs for $T_{i, j}$ if $T_{i, j}$ is chosen
$w_{i, j}$: probability that $T_{i, j}$ is chosen
$\mathrm{c}_{\mathrm{i}, \mathrm{j}}$: expected costs for $\mathrm{T}_{\mathrm{i}, \mathrm{j}}$ if no precondition is known
Lemma 3.3.5: If $\mathrm{T}_{\mathrm{i}, \mathrm{j}}$ is optimal, then each subtree is also optimal.

[^0]
Assertion 3.3.6:

$$
\begin{aligned}
w_{i, j} & =w_{i, m-1}+p_{m}+w_{m+1, j} \\
c_{i, j} & =w_{i, j} \cdot P\left(T_{i, j}\right) \\
& =w_{i, j} \cdot\left(1+P\left(T_{i, m-1}\right)+P\left(T_{m+1, j}\right)\right) \\
& =w_{i, j}+c_{i, m-1}+c_{m+1, j}
\end{aligned}
$$

Lemma 3.3.7:

$r_{i, j-1} \leq r_{i, j} \leq r_{i+1,}$

Example from Skript Alt:

Resulting construction of search tree:

$$
\begin{gathered}
p_{1}=0 \quad p_{2}=0,1 \quad p_{3}=0,2 \quad p_{4}=0,2 \\
q_{0}=0,1 \quad q_{1}=0,1 \quad q_{2}=0,1 \quad q_{3}=0,1 \quad q_{4}=0,1
\end{gathered}
$$

i	0	1	2	3	4
Init	$w_{1,0}=\mathbf{0 , 1}$	$w_{2,1}=0,1$	$w_{3,2}=0,1$	$w_{4,3}=0,1$	$w_{5,4}=0,1$
	$c_{1,0}=0$	$c_{2,1}=0$	$c_{3,2}=0$	$c_{4,3}=0$	$c_{5,4}=0$
$k=0$		$r_{1,1}=1$	$r_{2,2}=2$	$r_{3,3}=3$	$r_{4,4}=4$
		$w_{1,1}=0,2$	$w_{2,2}=0,3$	$w_{3,3}=0,4$	$w_{4,4}=0,4$
		$c_{1,1}=0,2$	$c_{2,2}=0,3$	$c_{3,3}=0,4$	$c_{4,4}=0,4$
$k=1$			$r_{1,2}=2$	$r_{2,3}=3$	$r_{3,4}=3$
			$w_{1,2}=0,4$	$w_{2,3}=0,6$	$w_{3,4}=0,7$
					$c_{1,2}=0,6$
$c_{2,3}=0,9$	$c_{3,4}=1,1$				
$k=2$				$r_{1,3}=2$	$r_{2,4}=3$
					$c_{1,3}=1,3$
				$c_{2,4}=1,6$	
$k=3$				$r_{1,4}=3$	
					$w_{1,4}=\mathbf{1}$

Tabelle 3.1: Tabelle zur Speicherung der Berechnungen des Algorithmus

| | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Notation: Skript Alt

[^0]: Algorithm 3: [Bellman, 1957] Iterative Suche nach dem optimalen Such-
 baum T.
 for $i=0, \ldots, n$ do Initialization for empty trees corresponding to
 $w_{i+1, i}=q_{i} \quad$ the intervals in between the search keys
 $c_{i+1, i}=0$
 end for $\ldots \ldots-\ldots k+1$ is the number of elements considered in $T_{i, j}$

 for $i=1, \ldots, n-k$ do
 $j=i+k$
 Bestimme m mit $\overbrace{i \leq m \leq j} j$, so dass $c_{i, m-1}+c_{m+1, j}$ minimal ist.
 $r_{i, j}=m$
 $w_{i, j}=w_{i, m-1}+w_{m+1, j}+p_{m}$
 $c_{i, j}=c_{i, m-1}+c_{m+1, j}+w_{i, j}$
 ond for
 end for

