
Algorithmicsg

Sebastian Iwanowski
FH W d lFH Wedel

3. Solutions for the dictionary problem
3.4 Optimal binary search trees

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg34 Slide 1

Algorithmics 3
3.4 Optimal binary search trees
Problem:

i. Let S = {a1,a2,…,an} be a linearily ordered set with predetermined probablities pi for the
occurrence of ai und qi für the occurrence of an element a in between: ai < a < ai+1.

ii. Construct a binary search tree which minimizes the expected response time (i.e. number of
i ith l t)comparisons with elements ai).

Required tree properties:
The tree should not only find the position of elements contained in the given dictionary,

Solution by the algorithm of Bellman (1957)

but also locate the position where new elements would be placed:
Inner nodes correspond to elements contained, leaves correspond to elements in between

Time for the construction of the search tree: O(n3) (easy to prove)

Solution by the algorithm of Bellman (1957)

Improvement: O(n2)

References:
Skript Alt S. 65 – 70 (ch. 3.3) in German: Other references are less clear

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg34 Slide 2

Knuth 6.2.2 (Binary Tree Searching)
Cormen 15.5 (ch. Dynamic Programming)

Bellman’s Algorithm for optimal binary search trees:

Ti,j: subtree for search items greater than ai-1 and less than aj+1

Special cases:
Ti,i: subtree for search items greater than ai-1 and less than ai+1.i,i g i 1 i 1

This tree consist of one node comparing with ai

Ti,i-1: subtree for search items greater than ai-1 and less than ai.
This tree is empty and corresponds to a leaf.

Ti,n: subtree for search items greater than ai-1

T1,j: subtree for search items less than aj+1

T t f ll h it

p y p

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg34 Slide 3

T1,n: tree for all search items
Notation: Skript Alt

Bellman’s Algorithm for optimal binary search trees:

ri,j: index m of the root of Ti,j: The item to be compared with is am

Ti,j: subtree for search items greater than ai-1 and less than aj+1

P(Ti,j): expected costs for Ti,j if Ti,j is chosen

wi,j: probability that Ti,j is chosen

ci,j: expected costs for Ti,j if no precondition is known

Lemma 3.3.5: If Ti,j is optimal, then each subtree is also optimal.

Assertion 3.3.6:Initialization for empty trees corresponding to
the intervals in between the search keys

wi,j = wi,m-1 + pm + wm+1,,j
ci,j = wi,j ∙ P(Ti,j)

= wi,j ∙ (1 + P(Ti,m-1) + P(Tm+1,j))
= w + c + c

k+1 is the number of elements considered in Ti,j

This is improved in Knuth

the intervals in between the search keys

= wi,j + ci,m-1 + cm+1,,j

L 3 3 7

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg34 Slide 4

Lemma 3.3.7:
ri,j-1 ≤ ri,j ≤ ri+1,j Notation: Skript Alt

Resulting construction of search tree:
Example from Skript Alt:

g

p1=0 p2=0,1 p3=0,2 p4=0,2

q0=0,1 q1=0,1 q2=0,1 q3=0,1 q4=0,1

0,1

11
2

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg34 Slide 5

Notation: Skript Alt

