Künstliche Intelligenz

Sebastian Iwanowski FH Wedel

Kap. 7: Ameisenalgorithmen

7.3: Im Detail: Aktualisierung der Pheromone am Beispiel des AntNet-Verfahrens

Teile der hier vorgestellten Folien stammen aus einer studentischen Vorlesung der Masterstudenten **Daniel Jarosch** und **Karsten Thiele**, gehalten am 09.01.2008

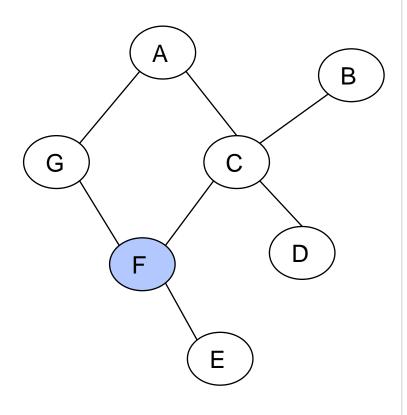
Vergleich mit Ant Based Control (ABC)

Gemeinsamkeiten

Vorwärts- und Rückwärtsameisen

- Ziel: Pheromonbasierte Routingtabelle erstellen
- Einträge der Routingtabelle sind Wahrscheinlichkeiten (Zeilensumme ist 1)
- Sie beeinflussen die Wegwahl der Vorwärtsmeisen und werden durch Rückwärtsameisen aktualisiert

Tabelle F				
Next	С	G	Е	
Dest				
А	0.3	0.65	0.05	
В	0.5	0.35	0.15	
С	0.9	0.05	0.05	
D	0.9	0.05	0.05	
E	0.05	0.05	0.9	
G	0.6	0.35	0.05	



Vergleich mit Ant Based Control (ABC)

Unterschiede

Problematik des ABC-Algorithmus

- Pheromonkonzentration reziprok abhängig von der absoluten Fahrzeit
- Geringe Pheromonausschüttung bei langen Strecken (lange Fahrzeit)
- Nur schwache Pheromonspur auf schnellen, langen Routen
- Bei zwei langen Routen: Differenz der Pheromonkonzentration nur gering

Verbesserungsziel im AntNet-Verfahren

- Bessere Strategie zur Aktualisierung der pheromonbasierten Knoteninformationen
- Ausschüttung erfolgt nicht aufgrund der absoluten Fahrzeit
- Vergleich der Fahrzeit mit dem besten Wert innerhalb eines Zeitfensters
- Pheromonausschüttung abhängig von der besten momentanen Reisedauer

Überblick

Erweiterte Informationen in den Knoten:

- 1) Lokales statistisches Modell
 - Zum Berechnen der Pheromonmatrix
- 2) (Vorläufige) Pheromonmatrix
 - Zum Berechnen der eigentlichen Pheromontabelle
 - Pheromonmatrix ≠ Pheromontabelle
- 3) (Endgültige) Pheromontabelle
 - hat gleiche Bedeutung wie bei ABC

G C D

Α

Daraus folgend: Veränderte Aktualisierung der Knoteninformationen

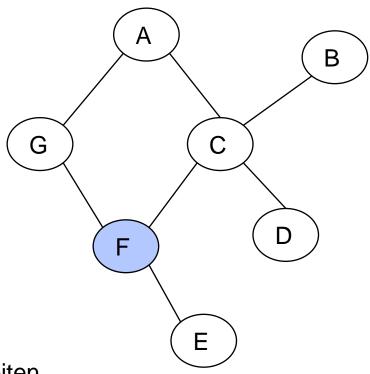
1) Lokales statistisches Modell

entspricht Verkehrsaufkommenstatistik

$$M_{id} = (\mu_{id}, \sigma_{id}^2, W_{id})$$

- μ_{id} Mittelwert aller Fahrzeiten
- σ_{id}^2 Varianz
- W_{id} Beobachtungsfenster
- $T_{id_{best}}$ Beste Fahrzeit im Fenster
- $w_{\rm max}$ Maximale Anzahl der letzten Fahrzeiten
- w_{id} Anzahl der gemessenen Fahrzeiten

i entspricht dem aktuellen Knoten d entspricht dem Zielknoten



1) Lokales statistisches Modell

$$M_{id} = (\mu_{id}, \sigma_{id}^2, W_{id})$$

Aktualisierung der statistischen Parameter:

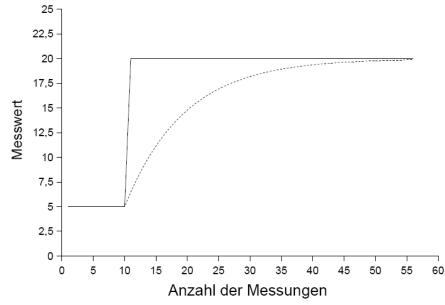
•
$$\mu_{id} \leftarrow \mu_{id} + c \cdot (t_{id} - \mu_{id})$$

•
$$\sigma_{id}^2 \leftarrow \sigma_{id}^2 + c \cdot ((t_{id} - \mu_{id})^2 - \sigma_{id}^2)$$

- $c \in [0,1]$
- Anzahl effektiver Messungen $w_{\rm max} = 5/c$

Adaptive Veränderung der lokalen Statistik

 Einzelner guter oder schlechter Wert soll keinen starken Einfluss auf Pheromonausschüttung haben



Für die Abbildung wurde ein c = 0.1 gewählt.

Die letzten 50 Messungen sind relevant.

$$\mu_{id} = 5, t_{id} = 20$$

$$\mu_{id} \leftarrow 5 + 0.1 \cdot (20 - 5) = 6.5$$

$$\mu_{id} \leftarrow 6.5 + 0.1 \cdot (20 - 6.5) = 7.85$$

$$\mu_{id} \leftarrow 7.85 + 0.1 \cdot (20 - 7.85) = 9.065$$

1) Lokales statistisches Modell

Das Beobachtungsfenster W_{id}

Ausgangslage: R₁ ist gute Route

R₂ ist schlechte Route

- Änderung der Verkehrslage: R₁ wird schlechter als R₂
 - Alte Pheromone von R₁ sollen schnell aus Beobachtungsfenster herausfallen ...
 - ... damit auf R₂ mehr Pheromone ausgeschüttet werden

Fenstergröße beeinflusst Reaktivität des Systems:

- Große Fenstergröße: Neue Routen bilden sich nach langer Zeit
- Kleine Fenstergröße: Überreaktion und schwingendes System
- → Fenstergröße muss geeignet gewählt werden

2) (Vorläufige) Pheromonmatrix

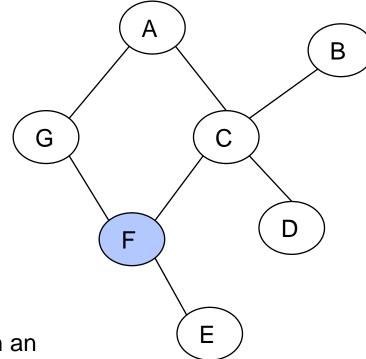
Nachbar	С	G	Е
Ziel			
Α	0.3	0.65	0.05
В	0.5	0.35	0.15
С	0.9	0.05	0.05
D	0.9	0.05	0.05
E	0.05	0.05	0.9
G	0.6	0.35	0.05

- Geben die Attraktivität der Nachbarknoten an
- Zeilenweise normalisiert $\sum_{j \in N_i} \tau_{ijd} = 1$

i entspricht dem aktuellen Knoten

j entspricht einem Nachbarknoten

d entspricht dem Zielknoten



2) (Vorläufige) Pheromonmatrix

- Pheromonausschüttung und –verdampfung abhängig von Weggüte
- Pheromonausschüttung
 - $\tau_{ifd} \leftarrow \tau_{ifd} + r \cdot (1 \tau_{ifd})$ wobei $n_f \in R$
 - Faktor r gibt die Stärke der Pheromonerhöhung an
 - Wählt eine Ameise eine bestimmten Route, so steigt die Wahrscheinlichkeit, dass sich eine weitere Ameise für die Route entscheidet
- Pheromonverdampfung
 - Normalisierung der Pheromonkonzentration
 - $\tau_{ijd} \leftarrow \tau_{ijd} r \cdot \tau_{ijd}$ mit $j \in N_i \land j \neq f$

Beispiel:
$$f = 0$$

$$\begin{split} &\tau_{i0d} = 0.6 \\ &\tau_{i1d} = 0.4 \\ &r = 0.5 \\ &\tau_{i0d} \leftarrow 0.6 + 0.5 \cdot (1 - 0.6) = 0.6 + 0.2 = 0.8 \\ &\tau_{i1d} \leftarrow 0.4 - 0.5 \cdot 0.4 = 0.4 - 0.2 = 0.2 \end{split}$$

2) (Vorläufige) Pheromonmatrix

$$r = c_1 \cdot \left(\frac{T_{id_{best}}}{t_{id}}\right) + c_2 \cdot \left(\frac{I_{trust} - T_{id_{best}}}{(I_{trust} - T_{id_{best}}) + (t_{id} - T_{id_{best}})}\right) \quad \text{mit} \quad I_{trust} = \mu_{id} + \frac{1}{\sqrt{(1 - v)}} \cdot \left(\frac{\sigma_{id}}{\sqrt{w_{id}}}\right)$$

Zwei Terme, die über zwei Konstanten c_1 und c_2 gewichtet werden

- 1. Term: Verhältnis zwischen bester und aktueller Fahrzeit
- 2. Term: Bewertung der Vertrauenswürdigkeit der Fahrzeit
- Zu starke Abweichungen führen zur geringerer Pheromonerhöhung
- Verbesserungen oder Verschlechterungen müssen von mehreren Ameisen bestätigt werden

Weitere Möglichkeit:

$$r = \frac{s(1)}{s(r)} \text{ mit } s(x) = 1 + e^{\frac{a}{x}} \text{ mit } x \in (0,1] \text{ und } a \in R^+$$

• Hohe Werte werden durch die Transformation stärker gewichtet: Dadurch wird das System sensitiver für gute Werte

3) (Endgültige) Pheromontabelle

Ameise im Knoten ni mit Ziel nd bestimmt nächsten Knoten ni mit Wahrscheinlichkeit Piid

$$P_{ijd} = \frac{\tau_{ijd} + \alpha \cdot \eta_{ij}}{1 + \alpha(|N_i| - 1)}$$

• α Globaler Faktor zur Wichtung

$$\begin{aligned} \bullet \ \eta_{ij} &\in \left[0,1\right] \\ \eta_{ij} &= 1 - \frac{q_{ij}}{\sum_{|N_i|} q_{ik}} \end{aligned}$$

 $\eta_{ij} = 1 - \frac{q_{ij}}{\sum_{a..}}$ Berücksichtigung individueller heuristischer Werte für die Kanten

Tabelle <i>i</i>			
j	j ₁	j	Jm
d\			
d1	0.3	:	0.15
d			
dn	0.9		0.05

• q_{ij} Maß, welches die Verbindung der Knoten n_i und n_i beschreibt

Unterschiedliche Bedeutung je nach Anwendungsfall:

- Fahrzeugnavigation: Fahrdauer im statistischen Fall
- Alternative Beispiele: Aktuelle Verkehrsdichte, Fahrzeit bis zum Ziel
- Es gilt aber immer: P_{iid} ≠ 0

Abhängigkeiten der zu berechnenden Parameter

Fahrdauer F \rightarrow B: $t_{FB} = 10$

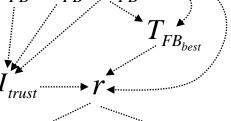
Lokales

statistisches $M_{FB} = (\mu_{FB}, \sigma_{FB}^{2}, W_{FB})$

Modell:

Stärke der

Pheromonänderung:



Pheromonmatrix:

$$\tau_{FCB} \leftarrow \tau_{FCB} + r \cdot (1 - \tau_{FCB}) \quad \tau_{FEB} \leftarrow \tau_{FEB} - r \cdot \tau_{FEB}$$

Ε

Pheromonausschüttung

Pheromonverdampfung

Pheromontabelle:

$$P_{ijd} = \frac{\tau_{ijd} + \alpha \cdot \eta_{ij}}{1 + \alpha(|N_i| - 1)}$$

Weitere Verbesserungsmöglichkeiten

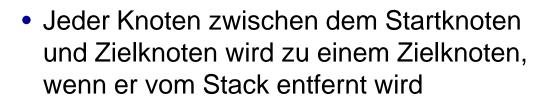
Aktualisierung von Teilpfaden (für alle ACO-Verfahren)

- Bisher wurde bei der Aktualisierung nur das Knotenpaar (n_i, n_d) betrachtet
- Annahme: $R_{s o d}$ ist die optimale Route von n_s nach n_d
 - n_i liegt auf der Route $R_{s \to d}$
 - Dann muss $R_{s \to i}$ die optimale Route von n_s nach n_i sein
 - Aktualisierung aller Knoten $n_i \neq n_d$
 - Neue Pheromontabelle
 - Lokales statistisches Modell
 - Pheromonmatrix

AntNet-spezifisch

Weitere Verbesserungsmöglichkeiten

Aktualisierung von Teilpfaden (für alle ACO-Verfahren)



 Nachfolgende Knoten aktualisieren ihre Informationen zu allen (generierten) Zielknoten

 M_{FF}

 M_{FF}

Nachbar Ziel 0.3 0.65 0.05 0.5 0.35 0.15 0.9 0.05 0.05 0.9 0.05 0.05 0.05 0.05 0.35 0.05

MF

 M_{F}

 M_{FA}

 M_{FB}

ι / .		. В‱ \
	В	
\setminus	С	1000
	F	

 M_{F}

Rückwärtsameise

AntNet-spezifisch

D

Ε