
FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 1

Algorithmics

Sebastian Iwanowski
FH Wedel

4. Graph algorithms
4.3 Computation of maximum flows in s/t-networks

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 4

References:
Cormen, ch. 26.2 (Ford-Fulkerson method)
Turau, Kap. 6.1 (siehe auch Ausarbeitung und Vortrag Seminararbeit Claudia Padberg)

Def.: s/t-cut (X,Y) (q/s-Schnitt):
Partition of vertices in G such that s ∈ X und t ∈ Y

Prop. 1: For each s/t-cut (X,Y) the following holds: |f| = f(X,Y)

Def.: capacity c(X,Y) of an s/t-cut:
Sum of all capacities c(u,v) where u ∈ X and v ∈ Y

Def.: flow f(X,Y) of an s/t-cut:
Sum of all flows f(u,v) where u ∈ X and v ∈ Y

Prop. 2: |f| ≤ min {c(X,Y); (X,Y) is s/t-cut}

Algorithmics 4
4.3 Computation of maximum flows in s/t-networks
Notation

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 5

References:
Cormen, ch. 26.2 (Ford-Fulkerson method)
Turau, Kap. 6.2 (anderer Beweis)

Max-flow min-cut theorem (Ford-Fulkerson theorem)
The following propositions are equivalent:

Proof:

• f is a maximum flow in G
• There is no augmenting path for f in G

• There is an s/t-cut (X,Y) where |f| = c(X,Y)

Circular argument:
1) => 2) trivial
2) => 3) will be shown in class (according to Cormen)
3) => 1) follows by Prop.2 of last slide

Algorithmics 4
4.3 Computation of maximum flows in s/t-networks

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 6

References:
Cormen, ch. 26.2 (Ford-Fulkerson method)
Alt, Kap. 4.5.4
Turau, Kap. 6.3 (mit Pseudocode) (siehe auch Seminararbeit Claudia Padberg)

Algorithm of Edmonds-Karp:
1) Initialize f by 0 for all edges.
Repeat

2a) Compute residual graph Gf
2b) Find augmenting path in Gf with breadth first search
3) Increase f by the residual flow of the augmenting path (Prop. 2, slide 3)

until no augmenting path exists

Correctness:

Time complexity:
follows by Ford-Fulkerson theorem
O(nm2)

Outline of time complexity proof:
Each operation of type 2a), 2b) and 3) costs time O(m) (easy to see)
There are O(nm) loop iterations:
Each augmenting path has got a critical edge. Each edge can be critical at most O(n) times.
There are m edges.

(using the notation of Skript Alt)

Algorithmics 4
4.3 Computation of maximum flows in s/t-networks

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 7

References:
Cormen, ch. 26.2 (Ford-Fulkerson method)
Alt, Kap. 4.5.4
Turau, Kap. 6.3 (anderer Beweisaufbau und Notation)

Algorithm of Edmonds-Karp:

Each path in a graph found by breadth first search starting at a source s
has got the minimum number of edges.

Lemma 1:

For each edge (u,v) of a path Pf in the residual network Gf found by breadth first search,
The following holds: δf(s,v) = δf(s,u) + 1

Lemma 2:

For a breadth first search, a source s and a target t, the following holds:

Let f, f΄ be two flows subsequently generated by Edmonds-Karp:
Then for all v ≠ s,t: δf(s,v) ≤ δf‘(s,v)

Lemma 4.5.8 / 26.8:
(Monotonicity)

Each edge will be at most n/2 times a critical one.Lemma 4.5.9 / 26.9:
(O(n) theorem)

Let δf(u,v) be the minimum number of edges between u and v in the residual network GfDef.:

Algorithmics 4
4.3 Computation of maximum flows in s/t-networks

Details of time complexity proof:

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 8

References:
Cormen, ch. 26.4 (push relabel algorithms)
Turau, Kap. 6.4 (siehe auch Ausarbeitung und Vortrag Seminararbeit C. Padberg)
Alt, Kap. 4.7

Algorithm of Dinic

Def.: blocking flow:
A flow where each path from s to t has got a critical edge.

Def.: Level graph Lf:
Delete all edges (u,v) from Gf where δf(s,v) ≤ δf(s,u)

(Turau: Niveaugraph G‘f)

Theorem: f is maximal ⇒ f is blocking

Theorem: |f‘| = |f| + |r|

Def. (Increase of a flow f by a flow r in Lf):
Let r be a flow in Lf. For each edge e, let f‘(e) = f(e) + r(e) – r(e)

Algorithmics 4
4.3 Computation of maximum flows in s/t-networks

Notation:

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg43 Slide 9

References for the details:
Cormen, ch. 26.4 (push relabel algorithms: with proof of correctness)
Turau, Kap. 6.4 (siehe auch Ausarbeitung und Vortrag Seminararbeit C. Padberg)
Alt, Kap. 4.7

1) Initialize f by 0 for all edges.
Repeat

2a) Compute Lf
2b) Search for a blocking flow r in Lf
3) Increase f by the blocking flow r

until no blocking flow exists (t cannot be reached anymore in Lf from s)

Time complexity: O(n2m)

Outline of time complexity proof:
In each iteration, δf(s,t) is increased by at least 1 ⇒ there are O(n) loop iterations
2a) and b) may be combined with a repeated depth first search: O(nm)
Improvement in Turau: O(n2)

Improvement in Turau: O(n3)

Difference to Edmonds-Karp:
Maximize each path in the flow, not just one.

Algorithm of Dinic

Algorithmics 4
4.3 Computation of maximum flows in s/t-networks

	Algorithmics��Sebastian Iwanowski�FH Wedel��4. Graph algorithms�4.3 Computation of maximum flows in s/t-networks
	 Algorithmics 4
	 Algorithmics 4
	 Algorithmics 4
	 Algorithmics 4
	 Algorithmics 4
	 Algorithmics 4

