Sebastian Iwanowski FH Wedel

4. Graph algorithms 4.3 Computation of maximum flows in s/t-networks

4.3 Computation of maximum flows in s/t-networks Notation

Def.: s/t-cut (X,Y) (q/s-Schnitt):

Partition of vertices in G such that $s \in X$ und $t \in Y$

Def.: capacity c(X,Y) of an s/t-cut:

Sum of all capacities c(u,v) where $u \in X$ and $v \in Y$

Def.: flow f(X,Y) of an s/t-cut:

Sum of all flows f(u,v) where $u \in X$ and $v \in Y$

- **Prop. 1:** For each s/t-cut (X,Y) the following holds: |f| = f(X,Y)
- **Prop. 2:** $|f| \le \min \{c(X,Y); (X,Y) \text{ is } s/t\text{-cut}\}\$

References:

Cormen, ch. 26.2 (Ford-Fulkerson method) Turau, Kap. 6.1 (siehe auch Ausarbeitung und Vortrag Seminararbeit Claudia Padberg)

4.3 Computation of maximum flows in s/t-networks Max-flow min-cut theorem (Ford-Fulkerson theorem)

The following propositions are equivalent:

- f is a maximum flow in G
- There is no augmenting path for f in G
- There is an s/t-cut (X,Y) where |f| = c(X,Y)

Proof:

Circular argument:

1) => 2) trivial
2) => 3) will be shown in class (according to Cormen)
3) => 1) follows by Prop.2 of last slide

References:

Cormen, ch. 26.2 (Ford-Fulkerson method) Turau, Kap. 6.2 (anderer Beweis)

4.3 Computation of maximum flows in s/t-networks

Algorithm of Edmonds-Karp:

(using the notation of Skript Alt)

1) Initialize f by 0 for all edges. Repeat

2a) Compute residual graph G_f

2b) Find augmenting path in G_f with breadth first search

3) Increase f by the residual flow of the augmenting path (Prop. 2, slide 3) until no augmenting path exists

Correctness: follows by Ford-Fulkerson theorem

Time complexity: O(nm²)

Outline of time complexity proof:

Each operation of type 2a), 2b) and 3) costs time O(m) (easy to see)

There are O(nm) loop iterations:

Each augmenting path has got a critical edge. Each edge can be critical at most O(n) times. There are m edges.

References:

Cormen, ch. 26.2 (Ford-Fulkerson method)

Alt, Kap. 4.5.4

Turau, Kap. 6.3 (mit Pseudocode) (siehe auch Seminararbeit Claudia Padberg)

4.3 Computation of maximum flows in s/t-networks

Algorithm of Edmonds-Karp:

Details of time complexity proof:

Def.: Let $\delta_f(u,v)$ be the minimum number of edges between u and v in the residual network G_f

For a breadth first search, a source s and a target t, the following holds:

- **Lemma 1:** Each path in a graph found by breadth first search starting at a source s has got the minimum number of edges.
- **Lemma 2:** For each edge (u,v) of a path P_f in the residual network G_f found by breadth first search, The following holds: $\delta_f(s,v) = \delta_f(s,u) + 1$

Lemma 4.5.8 / 26.8:Let f, f' be two flows subsequently generated by Edmonds-Karp:(Monotonicity)Then for all $v \neq s,t: \delta_f(s,v) \leq \delta_{f'}(s,v)$

Lemma 4.5.9 / 26.9: Each edge will be at most n/2 times a critical one. (O(n) theorem)

References:

Cormen, ch. 26.2 (Ford-Fulkerson method) Alt, Kap. 4.5.4 Turau, Kap. 6.3 (anderer Beweisaufbau und Notation)

4.3 Computation of maximum flows in s/t-networks Algorithm of Dinic

Notation:

Def.: Level graph L_f: (Turau: Niveaugraph G'_f) Delete all edges (u,v) from G_f where $\delta_f(s,v) \le \delta_f(s,u)$

Def.: blocking flow:

A flow where each path from s to t has got a critical edge.

```
Theorem: f is maximal \Rightarrow f is blocking
```

Def. (Increase of a flow f by a flow r in L_f):

Let r be a flow in L_f. For each edge e, let f'(e) = f(e) + r(e) - f(e)

```
Theorem: |f'| = |f| + |r|
```

References:

Cormen, ch. 26.4 (push relabel algorithms) Turau, Kap. 6.4 (siehe auch Ausarbeitung und Vortrag Seminararbeit C. Padberg) Alt, Kap. 4.7

4.3 Computation of maximum flows in s/t-networks

Algorithm of Dinic

1) Initialize f by 0 for all edges.Difference to Edmonds-Karp:RepeatMaximize each path in the flow, not just one.

2a) Compute L_f

2b) Search for a blocking flow r in L_f

3) Increase f by the blocking flow r

until no blocking flow exists (t cannot be reached anymore in L_f from s)

Time complexity: $O(n^2m)$ Improvement in Turau: $O(n^3)$

Outline of time complexity proof:

In each iteration, $\delta_f(s,t)$ is increased by at least 1 \Rightarrow there are O(n) loop iterations 2a) and b) may be combined with a repeated depth first search: O(nm) Improvement in Turau: O(n²)

References for the details:

Cormen, ch. 26.4 (push relabel algorithms: with proof of correctness) Turau, Kap. 6.4 (siehe auch Ausarbeitung und Vortrag Seminararbeit C. Padberg) Alt, Kap. 4.7