Sebastian Iwanowski FH Wedel

4. Graph algorithms4.1 Minimal spanning trees as motivation for basic algorithms

4.1 Minimal spanning Trees

Kruskal's Algorithm (simple variant):

Construction of a minimal spanning tree for an arbitrary graph G:

- Start with an empty forest F consisting of no edge
- Repeat for all edges e₁, e₂, ..., e_m of G (edges are in sorted order): Check if e_i may be inserted into F such that F is still without circles; If so, insert e_i into F; until F consists of n-1 edges (let n be the number of vertices of G).

Theorem: Thus constructed forest F is a minimal spanning tree of G

Exercise: Prove this theorem!

How to do this smarter?

Time complexity: $O(m \log m + n^2) (n^2 due to determination of connectivity component)$

References for catching up and delving into:

Skript Diskrete Mathematik 6, Folien 2,3,4,8,11,12,13 (graph theoretic basics) Turau Kap. 2.4 (Grundlagen), 3.6.1 (Kruskal) Cormen ch. 23 (Minimal spanning trees)

4.1 Basic algorithms for graph theory

Union-Find-Structure

In general: works on sets of sets, implements efficient location of the set of a given element and efficient union of sets

Graph theoretic application: efficient location and union of connectivity components

- O(log n) Find (v) returns a unique reference node of the connectivity component of v.
- O(1) Union (v,w) unifies the connectivity components of v and w after reference node has been determined

With path compression:

Expected time complexity of Find is in O(log*n)

Data representation:

Array of nodes: The contents are pairs of the form (index of the root, distance to the root)

References:

Skript Alt, Kap. 3.2 (p. 56 ff.), Cormen ch. 21 (Data structures for disjoint sets)

4.1 Basic algorithms for graph theory

Неар

Efficient management of a priority queue

Invariants:

A heap is a complete binary tree (elements may be missing only in the last depth level).
The keys of the children of each node are not less than the key of each node.

O(log n)	<pre>DeleteMin()</pre>	deletes the minimal element of the heap.
O(log n)	Insert (v)	inserts an arbitrary new element into the heap.
O(1)	<pre>SearchMin()</pre>	finds the minimal element of the heap.

Data representation:

Array of the heap nodes:

The contents are the contents of the heap nodes. The children of the node with index i are the nodes with indices 2i und 2i+1 (assuming that the array starts with index 1)

References:

Cormen, ch. 6 (Heapsort)

4.1 Minimal spanning Trees

Kruskal's Algorithm (efficient variant):

Construction of a minimal spanning tree for an arbitrary graph G:

- Start with an empty forest F consisting of no edge
- Start with a **union-find-structure** in which each vertex has its own connectivity component
- Insert all edges into a heap
- While F consists of less than n-1 edges:

Search and delete the minimal element e_{min} from the heap; Check if the vertices v and w incident with e_{min} are in the same connectvity component If not: Insert e_{min} into F and unify the connectivity components of v and w.

Time complexity: O(m log m) (m is the number of edges in G)

References:

Cormen, ch. 23.2 (Algorithms of Kruskal and Prim)