
FH Wedel Prof. Dr. Sebastian Iwanowski Alg41 Slide 1

Algorithmics

Sebastian Iwanowski
FH Wedel

4. Graph algorithms
4.1 Minimal spanning trees as motivation for basic algorithms



FH Wedel Prof. Dr. Sebastian Iwanowski Alg41 Slide 2

Algorithmics 4
4.1 Minimal spanning Trees

References for catching up and delving into:
Skript Diskrete Mathematik 6, Folien 2,3,4,8,11,12,13 (graph theoretic basics)
Turau Kap. 2.4 (Grundlagen), 3.6.1 (Kruskal)
Cormen ch. 23 (Minimal spanning trees)

Construction of a minimal spanning tree for an arbitrary graph G:
• Start with an empty forest F consisting of no edge

• Repeat for all edges e1, e2, ..., em of G (edges are in sorted order):
Check if ei may be inserted into F

such that F is still without circles;
If so, insert ei into F;

until F consists of n-1 edges (let n be the number of vertices of G).

Thus constructed forest F is a minimal spanning tree of G

Kruskal‘s Algorithm (simple variant):

Theorem:

O(m log m + n2) (n2 due to determination of connectivity component)Time complexity:

Prove this theorem!Exercise:
How to do this smarter? 



FH Wedel Prof. Dr. Sebastian Iwanowski Alg41 Slide 3

Algorithmics 4
4.1 Basic algorithms for graph theory

References:
Skript Alt, Kap. 3.2 (p. 56 ff.), Cormen ch. 21 (Data structures for disjoint sets)

Union-Find-Structure
In general: works on sets of sets,

implements efficient location of the set of a given element
and efficient union of sets

With path compression:

returns a unique reference node of the connectivity component of v.

unifies the connectivity components of v and w after reference node
has been determined

O(log n) Find (v)

O(1) Union (v,w)

Expected time complexity of Find is in O(log*n)

Data representation:
Array of nodes: The contents are pairs of the form (index of the root, distance to the root)

Graph theoretic application: efficient location and union of connectivity components



FH Wedel Prof. Dr. Sebastian Iwanowski Alg41 Slide 4

Algorithmics 4

References:
Cormen, ch. 6 (Heapsort)

Heap
Efficient management of a priority queue

DeleteMin() deletes the minimal element of the heap.
Insert (v) inserts an arbitrary new element into the heap.
SearchMin() finds the minimal element of the heap.

O(log n)
O(log n)
O(1)

Data representation:
Array of the heap nodes:

The contents are the contents of the heap nodes.
The children of the node with index i are the nodes with indices 2i und 2i+1

(assuming that the array starts with index 1)

Invariants:
1) A heap is a complete binary tree (elements may be missing only in the last depth level).
2) The keys of the children of each node are not less than the key of each node.

4.1 Basic algorithms for graph theory



FH Wedel Prof. Dr. Sebastian Iwanowski Alg41 Slide 5

Algorithmics 4
4.1 Minimal spanning Trees

Construction of a minimal spanning tree for an arbitrary graph G:
• Start with an empty forest F consisting of no edge

• While F consists of less than n-1 edges:
Search and delete the minimal element emin from the heap;
Check if the vertices v and w incident with emin are in the same connectvity component
If not: Insert emin into F and unify the connectivity components of v and w.

Kruskal‘s Algorithm (efficient variant):

O(m log m) (m is the number of edges in G)Time complexity:

• Start with a union-find-structure in which each vertex has its own connectivity component
• Insert all edges into a heap

References:
Cormen, ch. 23.2 (Algorithms of Kruskal and Prim)


	Algorithmics��Sebastian Iwanowski�FH Wedel��4. Graph algorithms�4.1 Minimal spanning trees as motivation for basic algorithms
	 Algorithmics 4
	 Algorithmics 4
	 Algorithmics 4
	 Algorithmics 4

