Algorithmics

Sebastian Iwanowski FH Wedel

3. Solutions for the dictionary problem3.4 Optimal binary search trees

Algorithmics 3

3.4 Optimal binary search trees

Problem:

- i. Let $S = \{a_1, a_2, ..., a_n\}$ be a linearily ordered set with predetermined probablities p_i for the occurrence of a_i und q_i für the occurrence of an element a in between: $a_i < a < a_{i+1}$.
- ii. Construct a binary search tree which minimizes the expected response time (i.e. number of comparisons with elements a_i).

Required tree properties:

The tree should not only find the position of elements contained in the given dictionary, but also locate the position where new elements would be placed: Inner nodes correspond to elements contained, leaves correspond to elements in between

Solution by the algorithm of Bellman (1957)

Time for the construction of the search tree: $O(n^3)$ (easy to prove) Improvement: $O(n^2)$

References:

Skript Alt S. 65 – 70 (ch. 3.3) in German: Other references are less clear

Cormen 15.5 (ch. Dynamic Programming)

Knuth 6.2.2 (Binary Tree Searching)

Bellman's Algorithm for optimal binary search trees:

п

 p_m

m+1

m-1

Special cases:

 $T_{i,i}$: optimal subtree for search items greater than a_{i-1} and less than a_{i+1} . This tree consist of one node comparing with a_i

 $T_{i,i-1}$: optimal subtree for search items greater than a_{i-1} and less than a_i . This tree is empty and corresponds to a leaf.

 $T_{i,n}$: optimal subtree for search items greater than a_{i-1}

- $T_{1,j}$: optimal subtree for search items less than a_{j+1}
- $T_{1,n}$: optimal subtree for all search items

aus: Skript Alt

Bellman's Algorithm for optimal binary search trees:

 $T_{i,i}$: optimal subtree for search items greater than a_{i-1} and less than a_{i+1}

 $r_{i,j}$: index m of the root of $T_{i,j}$: The item to be compared with is a_m

 $P(T_{i,j})$: expected costs for $T_{i,j}$ if $T_{i,j}$ is chosen

 $w_{i,j}$: probability that $T_{i,j}$ is chosen

 $c_{i,j}$: expected costs for $T_{i,j}$ if no precondition is known

Lemma 3.3.5: If $T_{i,i}$ is optimal, then each subtree is also optimal.

Algorithm 3: [Bellman, 1957] Iterative Suche nach dem optimalen Suchbaum T. 1: for i = 0, ..., n do Initialization for empty trees corresponding to $w_{i+1,i} = q_i$ 2: the intervals in between the search keys 3: $c_{i+1,i} = 0$ -- k+1 is the number of elements considered in T_{ii} 4: end for 5: for k = 0, ..., n - 1 do ----This is improved in Knuth, for i = 1, ..., n - k do 6: 7: i = i + kBestimme m mit $i \leq m \leq j$, so dass $c_{i,m-1} + c_{m+1,j}$ minimal ist. 8: $r_{i,j} = m$ 9: $w_{i,i} = w_{i,m-1} + w_{m+1,i} + p_m$ 10:11: $c_{i,j} = c_{i,m-1} + c_{m+1,j} + w_{i,j}$ end for 12:13: end for

Assertion 3.3.6: $W_{i,j} = W_{i,m-1} + p_m + W_{m+1,,j}$ $c_{i,j} = W_{i,j} \cdot P(T_{i,j})$ $= W_{i,j} \cdot (1 + P(T_{i,m-1}) + P(T_{m+1,j}))$ $= W_{i,j} + c_{i,m-1} + c_{m+1,,j}$

Lemma 3.3.7: $r_{i,j-1} \le r_{i,j} \le r_{i+1,j}$

aus: Skript Alt

Example from Skript Alt:

Resulting construction of search tree:

i	0	1	2	3	4
Init	$w_{1,0} = 0,1$	$w_{2,1} = 0, 1$	$w_{3,2} = 0, 1$	$w_{4,3} = 0, 1$	$w_{5,4} = 0, 1$
	$c_{1,0} = 0$	$c_{2,1} = 0$	$c_{3,2} = 0$	$c_{4,3} = 0$	$c_{5,4} = 0$
k = 0		$r_{1,1} = 1$	$r_{2,2} = 2$	$r_{3,3} = 3$	$r_{4,4} = 4$
		$w_{1,1} = 0, 2$	$w_{2,2} = 0, 3$	$w_{3,3} = 0, 4$	$w_{4,4} = 0, 4$
		$c_{1,1} = 0, 2$	$c_{2,2} = 0, 3$	$c_{3,3} = 0, 4$	$c_{4,4} = 0, 4$
k = 1			$r_{1,2} = 2$	$r_{2,3} = 3$	$r_{3,4} = 3$
			$w_{1,2} = 0, 4$	$w_{2,3} = 0, 6$	$w_{3,4} = 0,7$
			$c_{1,2} = 0, 6$	$c_{2,3} = 0,9$	$c_{3,4} = 1, 1$
k = 2				$r_{1,3} = 2$	$r_{2,4} = 3$
				$w_{1,3} = 0, 7$	$w_{2,4} = 0,9$
				$c_{1,3} = 1,3$	$c_{2,4} = 1, 6$
k = 3					$r_{1,4} = 3$
					$w_{1,4} = 1$
					$c_{1,4} = 2$

 $p_1=0$ $p_2=0,1$ $p_3=0,2$ $p_4=0,2$

 $q_0=0,1$ $q_1=0,1$ $q_2=0,1$ $q_3=0,1$ $q_4=0,1$

