
FH Wedel Prof. Dr. Sebastian Iwanowski .Alg34 Slide 1

Algorithmics

Sebastian Iwanowski
FH Wedel

3. Solutions for the dictionary problem
3.4 Optimal binary search trees

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg34 Slide 2

Algorithmics 3
3.4 Optimal binary search trees

References:
Skript Alt S. 65 – 70 (ch. 3.3) in German: Other references are less clear

i. Let S = {a1,a2,…,an} be a linearily ordered set with predetermined probablities pi for the
occurrence of ai und qi für the occurrence of an element a in between: ai < a < ai+1.

ii. Construct a binary search tree which minimizes the expected response time (i.e. number of
comparisons with elements ai).

Time for the construction of the search tree: O(n3) (easy to prove)

Solution by the algorithm of Bellman (1957)

Problem:

Improvement: O(n2)

Knuth 6.2.2 (Binary Tree Searching)
Cormen 15.5 (ch. Dynamic Programming)

Required tree properties:
The tree should not only find the position of elements contained in the given dictionary,
but also locate the position where new elements would be placed:
Inner nodes correspond to elements contained, leaves correspond to elements in between

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg34 Slide 3

Bellman’s Algorithm for optimal binary search trees:

aus: Skript Alt

Ti,j: optimal subtree for search items greater than ai-1 and less than aj+1

Ti,n: optimal subtree for search items greater than ai-1

T1,j: optimal subtree for search items less than aj+1

T1,n: optimal subtree for all search items

Special cases:
Ti,i: optimal subtree for search items greater than ai-1 and less than ai+1.

This tree consist of one node comparing with ai

Ti,i-1: optimal subtree for search items greater than ai-1 and less than ai.
This tree is empty and corresponds to a leaf.

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg34 Slide 4

aus: Skript Alt

P(Ti,j): expected costs for Ti,j if Ti,j is chosen

ci,j: expected costs for Ti,j if no precondition is known

wi,j: probability that Ti,j is chosen

ri,j: index m of the root of Ti,j: The item to be compared with is am

wi,j = wi,m-1 + pm + wm+1,,j
ci,j = wi,j ∙ P(Ti,j)

= wi,j ∙ (1 + P(Ti,m-1) + P(Tm+1,j))
= wi,j + ci,m-1 + cm+1,,j

Lemma 3.3.5: If Ti,j is optimal, then each subtree is also optimal.

Assertion 3.3.6:

k+1 is the number of elements considered in Ti,j

This is improved in Knuth

Lemma 3.3.7:
ri,j-1 ≤ ri,j ≤ ri+1,j

Initialization for empty trees corresponding to
the intervals in between the search keys

Bellman’s Algorithm for optimal binary search trees:

Ti,j: optimal subtree for search items greater than ai-1 and less than aj+1

FH Wedel Prof. Dr. Sebastian Iwanowski .Alg34 Slide 5

Resulting construction of search tree:
Example from Skript Alt:

p1=0 p2=0,1 p3=0,2 p4=0,2

q0=0,1 q1=0,1 q2=0,1 q3=0,1 q4=0,1

0,1

1
2

	Algorithmics��Sebastian Iwanowski�FH Wedel�� 3. Solutions for the dictionary problem�3.4 Optimal binary search trees
	 Algorithmics 3
	Slide Number 3
	Slide Number 4
	Slide Number 5

