VERKEHR UND LOGISTIK THEMA 09

FUNKTIONSWEISE VON
AMEISENSYSTEMEN BEIM VEHICLE
ROUTING PROBLEM

Timo Höltgen

GLIEDERUNG

- Erinnerung
- Traveling Salesman Problem
- ACO für das Traveling Salesman Problem
- ACO für das Vehicle Routing Problem
- Praxisbeispiel

ZUR ERINNERUNG

WAS GENAU WAR NOCHMAL ACO?

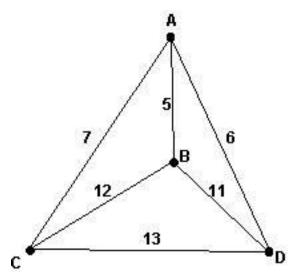
- Ant Colony Optimization (ACO) bezeichnet verschiedene Algorithmen, welche künstliche Ameisen zur Lösung eines kombinatorischen Optimierungsproblems verwenden.
- Vorbild sind echte Ameisen auf der Suche nach Futter.

WAS GENAU WAR NOCHMAL ACO?

- Ameisen hinterlassen Pheromone.
- Andere Ameisen folgen bevorzugt diesen Spuren.
- Kurze Wege werden schneller abgelaufen und somit öfter besprüht → effiziente Wege wirken attraktiver.
- Nicht alle Ameisen folgen den gelegten Spuren → neue (bessere) Wege können gefunden werden.

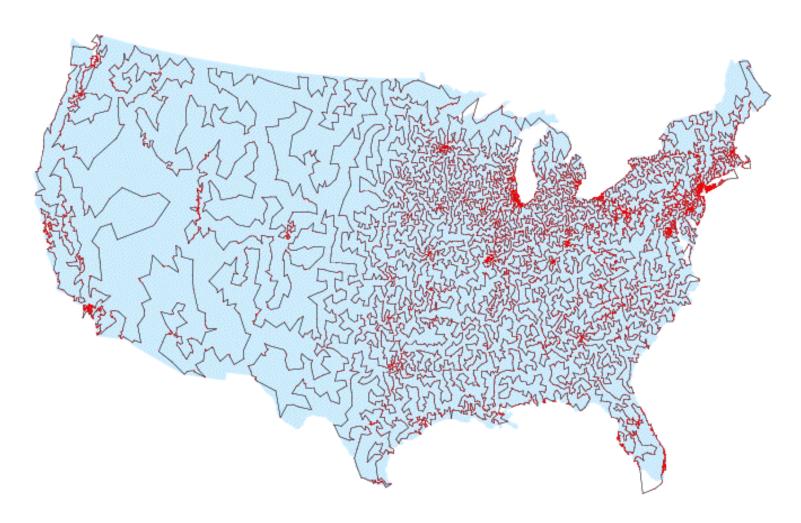
Was genau war nochmal das VRP?

- Ein Lieferant hat eine Flotte von Lieferfahrzeugen.
- Er muss eine gewissen Anzahl von Kunden beliefern.
- Jedes Fahrzeug hat eine eigene Route mit eigenen Kunden, welche nur von diesem Fahrzeug beliefert werden.
- Die Fahrzeuge starten von einem Depot und besuchen jeden Kunden ihrer Route. (TSP)


TRAVELING SALESMAN PROBLEM

Was genau war nochmal das TSP?

- Das TSP ist ein kombinatorisches Optimierungsproblem.
- Ziel ist es den kürzesten Weg einer Rundreise zu finden.
- Reisender möchte von einem Startpunkt aus gewisse Ziele besuchen und danach wieder zum Startpunkt zurückkehren.
- Reihenfolge der besuchten Orte ist beim grundlegenden TSP egal.


TSP ALS GRAPH

- TSP als gewichteter Graph G = (N, A, d).
- N ist die Menge der Knoten und A die Menge der Kanten.
- o Jede Kante (i, j) ∈ A besitzt eine Distanz d_{ii} . $(i, j \in N)$

o Eine Lösung: ACBDA (36)

BEISPIEL FÜR EIN TSP: RUNDREISE DURCH DIE USA

ACO FÜR DAS TRAVELING SALESMAN PROBLEM

ÜBERBLICK

- Der erste ACO Algorithmus heißt Ant System (Marco Dorigo 1992) und wurde am TSP getestet.
- TSP ist NP-schwer.
- TSP ist ein leicht zu verstehendes Problem.
- TSP kommt echten Ameisen auf Futtersuche sehr nah.

ALGORITHMUS SKELETT

- 1. Initialisierung der Parameter und Pheromone.
- Solang ein bestimmtes Abbruchkriterium noch nicht erfüllt ist wiederhole:
 - Lasse die k\u00fcnstlichen Ameisen eine komplette Tour konstruieren.
 - (führe extra Prozeduren aus.)
 - Aktualisiere die Pheromone.

INITIALISIERUNG

- Anfängliche Pheromonstärke nur ein wenig höher als der durchschnittliche Betrag an Pheromonen, die während einer Iteration gelegt werden.
- Ist der Betrag am Anfang zu klein, werden die Ameisen von den ersten Spuren zu stark beeinflusst.
- Ist der Betrag zu groß, fallen die ersten konstruierten Touren kaum ins Gewicht.
- Anzahl der Ameisen m wird auf Anzahl der Knoten n gesetzt.

Konstruktion der Tour

- Ein Startpunkt für jede Ameise wird festgelegt. Am besten eine Ameise auf jedem Knoten.
- 2. Jede Ameise wandert von Knoten zu Knoten, bis alle Knoten besucht wurden.
- 3. Rückkehr zum Startpunkt.

KONSTRUKTION DER TOUR

 Formel zur Berechnung der Wahrscheinlichkeit, den Knoten j als nächsten zu besuchen.

$$p_{ij}^{k} = \frac{\left[\tau_{ij}\right]^{\alpha} \left[\eta_{ij}\right]^{\beta}}{\sum_{l \in \mathcal{N}_{i}^{k}} \left[\tau_{il}\right]^{\alpha} \left[\eta_{il}\right]^{\beta}}, \quad \text{if } j \in \mathcal{N}_{i}^{k}$$

- τ_{ij} → Pheromonstärke. (Wie gut **war** die Strecke)
- η_{ij} → heuristischer Gehalt. Hier $1/d_{ij}$ (Wie gut **ist** die Strecke)
- α und β \rightarrow Parameter zur Steuerung des Einflusses.
- $\mathcal{N}_i^k \rightarrow$ Menge der brauchbaren Knoten.

Konstruktion der Tour

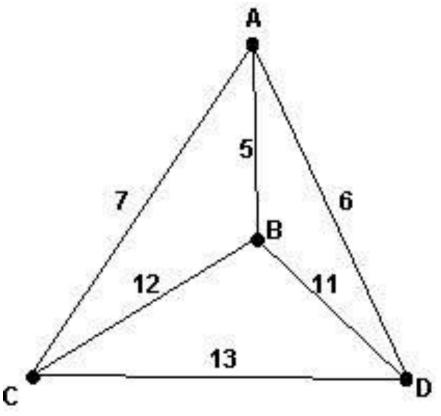
$$p_{ij}^{k} = \frac{\left[\tau_{ij}\right]^{\alpha} \left[\eta_{ij}\right]^{\beta}}{\sum_{l \in \mathcal{N}_{i}^{k}} \left[\tau_{il}\right]^{\alpha} \left[\eta_{il}\right]^{\beta}}, \quad \text{if } j \in \mathcal{N}_{i}^{k}$$

•
$$\tau_{ij} = 0.2$$
; $\eta_{ij} = 1/d_{ij}$

$$\circ \alpha = 1; \beta = 2$$

o
$$p_{ac}^{k} = 0.23$$

$$p^{k}_{ab} = 0.45$$


$$p_{ad} = 0.32$$

•
$$\tau_{ac} = 0.6$$

$$p_{ac} = 0.48$$

$$p^{k}_{ab} = 0.31$$

$$p_{ad} = 0.21$$

PHEROMON UPDATE

- Update der Pheromone beginnt nachdem alle Ameisen alle Knoten besucht haben.
- Konstruierte Touren können eventuell noch optimiert werden.
- Pheromonstärke kann in Abhängigkeit der Tour-Qualität dosiert werden.

PHEROMON UPDATE

- Zuerst werden die Beträge der Pheromone auf allen Kanten um einen konstanten Betrag verringert. (Pheromon Evaporation)
- Schlechte Touren werden immer weniger attraktiv.
- Formel für die Evaporation

$$\tau_{ij} \leftarrow (1 - p) \ \tau_{ij} \ \forall \ (i, j) \in A$$

o p → Die festgelegte Rate der Evaporation. 0

PHEROMON UPDATE

- Nach der Evaporation werden neue Spuren gelegt.
- Jede Ameise erhöht den Betrag auf den Kanten, auf denen sie gelaufen ist.

- $\Delta \tau^k_{jj}$ \rightarrow Der Betrag den Ameise k auf der Kante (i, j) deponiert.
- o $\Delta \tau^k_{jj} = 1/L^k$, wenn Kante (*i*, *j*) zur Tour von *k* gehört, ansonsten $\Delta \tau^k_{jj} = 0$.
- Lk ist die Länge der Tour von Ameise k.

ANMERKUNGEN

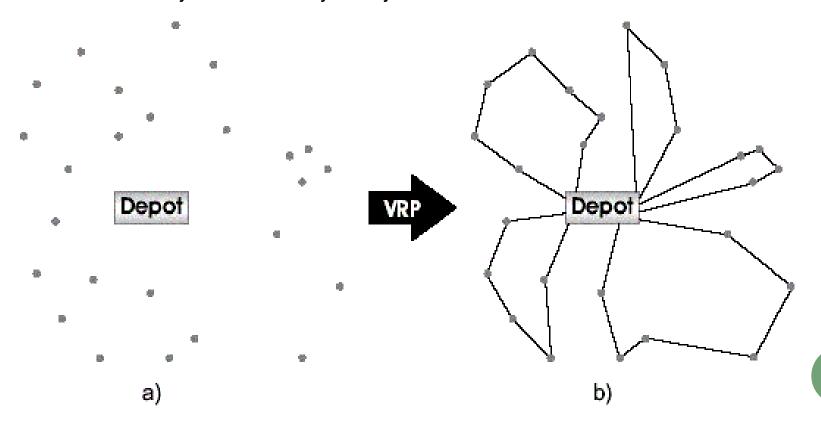
- Die Wahrscheinlichkeit für alle Knoten auszurechnen kann bei großen TSPs zu schlechter Performance führen.
- Deshalb werden "Nearest-Neighbour-Lists" eingesetzt.
- Sämtliche Distanzen zwischen zwei Knoten sind bekannt.
- Für jeden Knoten: Liste der nächsten Nachbar-Knoten.
- Ameise entscheidet sich nur noch zwischen diesen Knoten.

ANMERKUNGEN

- Weitere Verbesserung des Algorithmus bringt das Einführen von Elite-Ameisen.
- Nach Ende aller Touren werden die Längen berechnet.
- Nur die "besten" Ameisen legen Pheromone.
- Also die Ameisen, welche die besten Lösungen konstruiert haben.

ACO FÜR DAS VEHICLE ROUTING PROBLEM

Vom TSP zum VRP


- VRP vereinigt mehrere TSPs.
- Es liegt nahe sehr ähnliche Algorithmen für das VRP zu verwenden, wie für das TSP.
- Zusätzliche Komplexität: Mehrere Rundreisen (Routen).
- Zusätzliche Bedingungen: Kapazität der Fahrzeuge, Zeitfenster der Belieferung.

CAPACITATED VEHICLE ROUTING PROBLEM

- CVRP ist das klassische VRP. Deshalb das erste VRP, auf welches ein ACO-Algorithmus angewendet wurde.
- Ameisen wählen einen Kunden nach dem anderen wie beim TSP.
- Überschreitung der Kapazität oder der maximal erlaubten Routenlänge des Fahrzeugs → Ameise geht zurück zum Depot.

CAPACITATED VEHICLE ROUTING PROBLEM

• Heuristischer Gehalt ist gegeben durch folgende Formel: $\eta_{ij} = d_{i0} + d_{0j} - d_{ij}$

CAPACITATED VEHICLE ROUTING PROBLEM

 Es werden "Nearest-Neighbour-Lists" und Elite-Ameisen eingesetzt, wodurch sich das Updaten der Pheromone ändert.

 σ -1

- $\circ \sigma \rightarrow$ Festgelegte Anzahl an Elite-Ameisen.
- $\circ \mu \rightarrow$ Index der Elite-Ameisen.
- ο $\Delta \tau^{\mu}$ → Betrag an Pheromon. (σ μ) / L^{μ} .
- o $\Delta \tau^*$ → Betrag an Pheromon, welcher nur auf die Beste Route gelegt wird. 1 / L^* .

- Typisches VRP in der Realität.
- Größter Unterschied zum TSP: Zeitfenster.
- Die Kunden können nicht zu jeder Zeit beliefert werden.
- o Berücksichtigung von zwei Problemen:
 - Minimierung der Routenanzahl (Fahrzeuge)
 - Minimierung der kompletten Reisezeit.
- Minimierung der Routenanzahl hat Vorrang.

- Effizientester ACO Algorithmus für das VRPTW → MACS-VRPTW. (Multi-Ant-Colony-System)
- Zentrale Idee: Zwei parallele Ameisen Kolonien.
- Eine zur Minimierung der Routenanzahl (ACS-VEI) und eine zur Minimierung der Reisezeit (ACS-TIME).
- Beide Kolonien sind unabhängig → sie benutzen eigene Pheromone.
- Die Beste Lösung wird mit Pheromonen aus beiden Kolonien belegt.

• MACS-VRPTW:

- Eine brauchbare Startlösung wird mit Hilfe einer geeigneten Heuristik erstellt.
- ACS-VEI wird mit einem Fahrzeug weniger gestartet und versucht eine bessere Lösung zu finden.
- 3. ACS-TIME wird auch gestartet und versucht die Zeit zum Beliefern aller Kunden zu verringern.
- Wenn durch ACS-VEI eine bessere Lösung gefunden wird, wird die Anzahl an Fahrzeugen um Eins verringert und wieder bei Schritt 2 begonnen.

- Brauchbare Knoten für die Ameisen:
- Alle noch nicht besuchten Knoten, bei denen die Ankunftszeit und die Verladezeit nicht das Zeitfenster verletzen.
- Bei der Berechnung der Wahrscheinlichkeit einen Knoten zu besuchen fließt die Zeit in den heuristischen Gehalt ein.
- Je weniger Zeit zur Belieferung eines Kunden bleibt, umso "näher" wird er für die Ameisen erscheinen.

PRAXISBEISPIEL

EINE VRPTW APPLIKATION

- Eine der größten Supermarktketten der Schweiz.
- Güter auf Palletten zu über 600 Filialen liefern.
- Lieferungen innerhalb von bestimmten Zeitfenstern.
- Es gibt verschiedene Fahrzeugtypen. Nicht jedes Fahrzeug kann jeden Laden beliefern.
- Die Fahrzeuganzahl ist nicht begrenzt.

EINE VRPTW APPLIKATION

- Jede Tour muss innerhalb eines Tages vollendet sein.
- Daten zur Erstellung des Graphen wurden über Jahre gesammelt.
- Es wurden die Distanz und die mögliche Fahrgeschwindigkeit für die Gewichtung der Kanten berücksichtigt.

LÖSUNG

- Benutzt wurde ANTROUTE, eine leichte Modifikation des MACS-VRPTW Algorithmus.
- Ameisen entscheiden sich zufällig am Anfang ihrer Tour für einen Fahrzeugtyp.
- "Wartekosten" wurden eingeführt, damit ein Fahrzeug nicht zu früh bei einem Laden ankommt.

LÖSUNG

- Zwei Konfigurationen:
 - AR-RegTW berücksichtigt regionale Planungsvorgaben und hat Zeitfenster von jeweils einer Stunde pro Laden.
 - AR-Free lockert diese Restriktionen.
- 52.000 Palletten sollten über 20 Tage zu 6.800 Standorten geliefert werden.
- ANTROUTE wurde jeden Tag mit den aktuellen Lieferungen gestartet und hatte im Durchschnitt schon nach 5 min. gute Lösungen anzubieten.
- Die menschlichen Planer des Unternehmens brauchten pro Tag ca. 3 Stunden, um auf eine geeignete Lösung zu kommen.

LÖSUNG

• ANTROUTE im Vergleich mit den menschlichen Tourenplanern des Unternehmens.

	Planer des Unternehmens	AR-RegTW	AR-Free	AR-RegTW vs. Planer	AR-Free vs. Planer
Totale Anzahl der Touren	2.056	1.807	1.614	12,11%	21,50%
Totale Strecke in km	147.271	143.983	126.258	2,23%	14,27%
Durchschnittliche Fahrzeugauslastung	76,91%	87,35%	97,81%	10,44%	20,9%

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT

GIBT ES NOCH FRAGEN?