Sebastian Iwanowski FH Wedel

6. Fundamentals of Algorithmic Geometry6.2 Sweep Techniques

Algorithmics 6	
6.2 Sweep Techniques	
Transformation static d-dimensional \rightarrow dynamic (d-1)-dimensional	
<u>d = 1:</u> Line Sweep	
1) Maximum search among n numbers (O(n))	
2) Closest Pair: Among n numbers, search the two that are closest together.	O(n log n)
Preprocessing: Sort all numbers	O(n log n)
Sweep: Scan from left to right and keep the closest pair respectively	O(n)

References:

Klein, Kap. 2.2 (in German)

6.2 Sweep Techniques

Transformation static d-dimensional \rightarrow dynamic (d-1)-dimensional

<u>d = 2:</u> Plane Sweep

3) Closest Pair: Among n points, search the two that are closest together.

Preprocessing: Sort all points by x-coordinate Sweep: Scan from left to right with 2 vertical lines *left* and *right*.

Invariants:

Horizontal distance between *left* and *right* is the minimum distance of the closest pair left of *left*.

Line content maintains all points between left and right sorted by y-coordinate.

Events and actions:

 In the passes point p:
 p is deleted
 O(log n)

 In the passes point p:
 p is inserted into line content and its distance is computed
 O(log n)

 In the passes point p:
 p is inserted into line content and its distance is computed
 O(log n)

 In the passes point p:
 p is inserted into line content of which the y coordinate differs from p at most by the minimum distance between points found so far.
 O(log n)

References: Klein, Kap. 2.3.1 (in German)

O(n log n)

6.2 Sweep Techniques

Transformation static d-dimensional \rightarrow dynamic (d-1)-dimensional

Characteristic properties of sweep techniques:

- Scan over selected and sorted x-coordinates (events) from left to right
- Sweep status structure (SSS) with invariants
- Events are computed statically during preprocessing and dynamically during updating the SSS.
- Sleeping objects: right of SSS, will yet be considered
 Active objects: within SSS, are currently relevant for updating the SSS
 dead objects: left of SSS, need never be considered again

References:

Klein, Kap. 2.3.1

Application: Computation of Voronoi diagrams by plane sweep Objekts of SSS:

- Right vertical line L
- Left beach line consisting of:
 - Parabolic segments of Bisector (p,L), given by p and the adjacent segments to top and bottom and by the respective spikes (see below)
 - Intersection points of adjacent parabolic segments, sorted by y-coordinate
 - Spikes: Bisektors B(p,q) for two adjacent reference points p and q.
 Each beach line segment has got two adjacent spikes (except for the first and the last).

Lemma: The overall size of the beach line and hence of SSS is of order O(n)

References:

Klein, Kap. 6.3 (in German), de Berg et al., ch. 7.2

Application: Computation of Voronoi diagrams by plane sweep Events and actions during sweep:

- Spike event: Intersection of adjacent spikes: Associated beach line segment vanishes.
- Point event: New point is passed: Generation of new beach line segment. This required the computation of new spikes and spike events.

Run time: Update of events in O(log n)

O(n) events \rightarrow Total time complexity: $O(n \log n)$

This is optimal!

References:

Klein, Kap. 6.3 (in German), de Berg et al., ch. 7.2