Algorithmics

Sebastian lwanowski
FH Wedel

5. String Matching



Algorithmics 5
String Matching

Task: Given a text T with n literals and a pattern P with m literals:
Find the starting positions where P occurs in T.

naive algorithm: needs O(nm) time

Algorithm of Knuth-Morris-Pratt: needs O(n) time

Def.: P, denotes the prefix of P consisting of the first q literals.

Def.: The prefix function 1: N-N for the pattern P is defined as:
m(q) = k < k is the length of the longest strict prefix of P, (sfrict means: k < q)
which is also a Suffix of P,

General method of the KMP algorithm:

For each q £ m, compute the value 11(q) of the prefix function and store it.
Then scan T in only one iteration and shift P at any mismatch in pattern position q

by q - (q). In class: Why is this correct?
References:

Alt, Kap. 4.8
Cormen, ch. 32 (String matching), esp. 32.4 (KMP)



Algorithmics 5
String Matching

Algorithm of Knuth-Morris-Pratt: needs O(n) time
Implementation of main procedure (version of Cormen):

i:=1; g :=0;

g corresponds to the last index such that TJi] coincided with P[q]
while i £ n do

{ . . . .
. . To be considered with this version:
while (q>0)and (T[i] # P[q+l]) Why is this algorithm correct?
q =1 (q);
if T[i] = P[g+l] then g := g+l1;
ifgq=m
then
{
print (,Matching at position “, i-m);
q :=T1 (q);
}
i = i+1;
}
References:
Alt, Kap. 4.8

Cormen, ch. 32 (String matching), esp. 32.4 (KMP)



Algorithmics 5
String Matching

Algorithm of Knuth-Morris-Pratt: needs O(n) time

Implementation of main procedure (version of Iw):

i:=1;,q:=1; q corresponds to the last index such that TJ[i] coincided with P[g-1]
while i £ n do

¢ Home work:

if (T[i] = P[q]) or (g = 1) . . o
then i ‘= i+1 Why does this algorithm need O(n) time”

else q := 1 (g-1)+1;
if (T[i] = P[q]) then g := g+l1;
ifg>m

then

{

print (,Matching at position “, i-m);
q :=1 (g-1)+1;

}
References:

Alt, Kap. 4.8
Cormen, ch. 32 (String matching), esp. 32.4 (KMP)



Algorithmics 5
String Matching

Algorithm of Knuth-Morris-Pratt: needs O(n) time

Implementation of prefix function (according to Cormen/Alt): needs O(m) time

Il = ;
cc()g,)sequegtMatch = 0: In ClaSS:
for g := 2 to m do Why does this algorithm need O(m) time?

{

while (P(consequentMatch+l)#*P(q)) and (consequentMatch>0) do
consequentMatch := n(consequentMatch) ;

if P(consequentMatch+l)=P(q)
then consequentMatch := consequentMatch+l;

n(q) := consequentMatch

In class:
Why is this algorithm correct?

References:

Alt, Kap. 4.8
Cormen, ch. 32 (String matching), esp. 32.4 (KMP)



	AlgorithmicsSebastian IwanowskiFH Wedel5. String Matching
	Algorithmics 5
	Algorithmics 5
	Algorithmics 5
	Algorithmics 5

