
FH Wedel Prof. Dr. Sebastian Iwanowski Alg42 Slide 1

Algorithmik

Sebastian Iwanowski
FH Wedel

4. Graph algorithms
4.2 Shortest paths



FH Wedel Prof. Dr. Sebastian Iwanowski Alg42 Slide 2

Algorithmics 4
SSSP: Single Source Shortest Path

Algorithm of Dijkstra for SSSP: (for graphs G with nonnegative edge costs only)

Find the shortest paths from a source s to all other nodes

• Initialize the node set Done by s;
Initialize the node set Undone by all other nodes of graph G;
For all nodes v of the graph G:

Let label (v) := length of edge between v and s (∞ if no edge is existing, 0 if v = s);
• While Undone is not empty:

Search and delete the node v from Undone with minimal label;
Insert v into Done;
Update all neighbors n of v that are in Undone:

If label (n) > label (v) + length of edge between v and n:
Replace label (n) by that number;
Let v be the predecessor of n.

Theorem: The labels of nodes v in Done are always the shortest path length from s to v
and the shortest path is the shortest path from s to the predecessor of v 
followed by the edge from the predecessor to v.

Proof: Complete induction by number of iterations.

Remark: For the problem to find the shortes path between two given nodes there is no better
algorithm known than those for SSSP, and those have not been proved being optimal even for SSSP.



FH Wedel Prof. Dr. Sebastian Iwanowski Alg42 Slide 3

Algorithmics 4
SSSP: Single Source Shortest Path

Find the shortest paths from a source s to all other nodes

Remark: For the problem to find the shortes path between two given nodes there is no better
algorithm known than those for SSSP, and those have not been proved being optimal even for SSSP.

Algorithm of Dijkstra for SSSP: (for graphs G with nonnegative edge costs only)

Organize the edge costs in a heap.

Time complexity: O((m+n)log n)

for arbitrary graphs: O(n2log n)
for graphs with a constant number of neighbors per node: O(n log n)

References:
Skript Alt 4.4.1 (p. 79-81),
Cormen, ch. 24 (much more detailed: SSSP)



FH Wedel Prof. Dr. Sebastian Iwanowski Alg42 Slide 4

Algorithmics 4
APSP: All Pairs Shortest Path

Find the shortest paths between all pairs of nodes

Trivial solution: Apply Dijkstra iteratively for all nodes as sources

Time complexity: O((m+n)log n)
for arbitrary graphs: O(n3log n)
for graphs with a constant number of neighbors per node: O(n2 log n)

Apply Dijkstra iteratively for all nodes as sources
Time complexity: O(n(m+n)log n)

References:
Skript Alt 4.4.2, 4.4.3 (p. 81-83),
Cormen, ch. 25.2 (Floyd-Warshall)

Algorithm of Floyd-Warshall:
Let V = {1,...n}.
dij

(k) is the length of the shortest path between i and j 
using in between at most nodes from {1,...k}.

Time complexity: O(n3)



FH Wedel Prof. Dr. Sebastian Iwanowski Alg42 Slide 5

Algorithmics 4
APSP: All Pairs Shortest Path
Find the shortest paths between all pairs of nodes

Relation to matrix multiplication:
Let V = {1,...n}.
dij

(k) is the length of the shortest path between i und j using at most k edges.
Note: This definition is different from Floyd-Warshall‘s!

Let A be the adjacency matrix.
Define the operation min instead of addition and the operation + instead of multiplication.

Then Ak holds in position (i,j) the length dij
(k). 

In particular, An-1 holds in position (i,j) the length of the shortest path from i to j.

Theorem:

Time complexity O(nlog 7 log n)

Quadratic potentiation: An-1 may be computed with O(log n) matrix multiplications.

Strassens‘s algorithm: Two nxn-matrices may be multiplied with O(nlog 7) operations.

Conclusion for APSP: Note that log 7 ≈ 2,81

References for a deeper insight:
Cormen, ch. 25.1 (relation to matrix multiplication), ch. 28.2 (Strassen’s algorithm)


	AlgorithmikSebastian IwanowskiFH Wedel4. Graph algorithms4.2 Shortest paths
	Algorithmics 4
	Algorithmics 4
	Algorithmics 4
	Algorithmics 4

