## Algorithmics

Sebastian Iwanowski<br>FH Wedel

3. Solutions for the dictionary problem 3.4 Optimal binary search trees

## Algorithmics 3

### 3.4 Optimal binary search trees

## Problem:

i. Let $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a linearily ordered set with predetermined probablities $p_{i}$ for the occurrence of $a_{i}$ und $q_{i}$ für the occurrence of an element $a$ in between: $a_{i}<a<a_{i+1}$.
ii. Construct a binary search tree which minimizes the expected response time (i.e. number of comparisons with elements $\mathrm{a}_{\mathrm{i}}$ ).

## Solution by the algorithm of Bellman (1957)

Time for the construction of the search tree: $\mathrm{O}\left(\mathrm{n}^{3}\right)$ (easy to prove)
Improvement: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

## References:

Skript Alt S. $65-70$ (ch. 3.3) in German: Other references are less clear
Cormen 15.5 (ch. Dynamic Programming)
Knuth 6.2.2 (Binary Tree Searching)

## Bellman's Algorithm for optimal binary search trees:

$T_{i, j}$ : optimal subtree for search items greater than $a_{i-1}$ and less than $a_{j+1}$

Special cases:

$\mathrm{T}_{\mathrm{i}, \mathrm{i}}$ : optimal subtree for search items greater than $\mathrm{a}_{\mathrm{i}-1}$ and less than $\mathrm{a}_{\mathrm{i}-1}$.
This tree consist of one node comparing with $\mathrm{a}_{\mathrm{i}}$
$\mathrm{T}_{\mathrm{i},-1-1}$ : optimal subtree for search items greater than $\mathrm{a}_{\mathrm{i}-1}$ and less than $\mathrm{a}_{\mathrm{i}}$.
This tree is empty and corresponds to a leaf.
$\mathrm{T}_{\mathrm{i}, \mathrm{n}}$ : optimal subtree for search items greater than $\mathrm{a}_{\mathrm{i}-1}$
$\mathrm{T}_{1, j}$ : optimal subtree for search items less than $\mathrm{a}_{\mathrm{j}+1}$
$\mathrm{T}_{1, \mathrm{n}}$ : optimal subtree for all search items

## Bellman's Algorithm for optimal binary search trees:

$\mathrm{T}_{\mathrm{i}, \mathrm{j}}$ : optimal subtree for search items greater than $\mathrm{a}_{\mathrm{i}-1}$ and less than $\mathrm{a}_{\mathrm{j}+1}$ $r_{i, j}$ : index $m$ of the root of $T_{i, j}$ : The item to be compared with is $a_{m}$ $P\left(T_{i, j}\right)$ : expected costs for $T_{i, j}$ if $T_{i, j}$ is chosen $\mathrm{w}_{\mathrm{i}, \mathrm{j}}$ : probability that $\mathrm{T}_{\mathrm{i}, \mathrm{j}}$ is chosen $\mathrm{c}_{\mathrm{i}, \mathrm{j}}$ : expected costs for $\mathrm{T}_{\mathrm{i}, \mathrm{j}}$ if no precondition is known

Lemma 3.3.5: If $\mathrm{T}_{\mathrm{i}, \mathrm{j}}$ is optimal, then each subtree is also optimal.


```
Algorithm 3: [Bellman, 1957] Iterative Suche nach dem optimalen Such-
baum T.
```

```
for }i=0,\ldots,n\mathrm{ do
```

for }i=0,···,n\mathrm{ do
wi+1,i}=\mp@subsup{q}{i}{
wi+1,i}=\mp@subsup{q}{i}{
ci+1,i}=
ci+1,i}=
end for____.-- k+1 is the number of elements considered in T}\mp@subsup{T}{i,j}{
end for____.-- k+1 is the number of elements considered in T}\mp@subsup{T}{i,j}{
for }k\stackrel{4-}{=}0,···,n-1 d
for }k\stackrel{4-}{=}0,···,n-1 d
for }i=1,···,n-k d
for }i=1,···,n-k d
j=i+k
j=i+k
Bestimme m mit }\mp@subsup{\overbrace}{\leqm\leqj\leq}{\prime}\mathrm{ , so dass }\mp@subsup{c}{i,m-1}{}+\mp@subsup{c}{m+1,j}{}\mathrm{ minimal ist.
Bestimme m mit }\mp@subsup{\overbrace}{\leqm\leqj\leq}{\prime}\mathrm{ , so dass }\mp@subsup{c}{i,m-1}{}+\mp@subsup{c}{m+1,j}{}\mathrm{ minimal ist.
ri,j}=
ri,j}=
wi,j}=\mp@subsup{w}{i,m-1}{}+\mp@subsup{w}{m+1,j}{}+\mp@subsup{p}{m}{
wi,j}=\mp@subsup{w}{i,m-1}{}+\mp@subsup{w}{m+1,j}{}+\mp@subsup{p}{m}{
c}\mp@subsup{c}{i,j}{}=\mp@subsup{c}{i,m-1}{}+\mp@subsup{c}{m+1,j}{}+\mp@subsup{w}{i,j}{
c}\mp@subsup{c}{i,j}{}=\mp@subsup{c}{i,m-1}{}+\mp@subsup{c}{m+1,j}{}+\mp@subsup{w}{i,j}{
end for
end for
end for

```
    end for
```


## Assertion 3.3.6:

$$
\begin{aligned}
w_{i, j} & =w_{i, m-1}+p_{m}+w_{m+1, j} \\
c_{i, j} & =w_{i, j} \cdot P\left(T_{i, j}\right) \\
& =w_{i, j} \cdot\left(1+P\left(T_{i, m-1}\right)+P\left(T_{m+1, j}\right)\right) \\
& =w_{i, j}+c_{i, m-1}+c_{m+1, j}
\end{aligned}
$$

## Lemma 3.3.7:

$r_{i, j-1} \leq r_{i, j} \leq r_{i+1, j}$

## Example from Skript Alt:

## Resulting construction of search tree:

| $i$ | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Init | $\begin{aligned} & \hline w_{1,0}=0,1 \\ & c_{1,0}=0 \end{aligned}$ | $\begin{aligned} & \hline w_{2,1}=0,1 \\ & c_{2,1}=0 \end{aligned}$ | $\begin{aligned} & w_{3,2}=0,1 \\ & c_{3,2}=0 \end{aligned}$ | $\begin{aligned} & \hline w_{4,3}=0,1 \\ & c_{4,3}=0 \end{aligned}$ | $\begin{aligned} & \hline w_{5,4}=0,1 \\ & c_{5,4}=0 \end{aligned}$ |
| $k=0$ |  | $\begin{aligned} & r_{1,1}=1 \\ & w_{1,1}=0,2 \\ & c_{1,1}=0,2 \end{aligned}$ | $\begin{aligned} & r_{2,2}=2 \\ & w_{2,2}=0,3 \\ & c_{2,2}=0,3 \end{aligned}$ | $\begin{aligned} & r_{3,3}=3 \\ & w_{3,3}=0,4 \\ & c_{3,3}=0,4 \end{aligned}$ | $\begin{aligned} & r_{4,4}=4 \\ & w_{4,4}=0,4 \\ & c_{4,4}=0,4 \end{aligned}$ |
| $k=1$ |  |  | $\begin{aligned} & r_{1,2}=2 \\ & w_{1,2}=0,4 \\ & c_{1,2}=0,6 \end{aligned}$ | $\begin{aligned} & r_{2,3}=3 \\ & w_{2,3}=0,6 \\ & c_{2,3}=0,9 \end{aligned}$ | $\begin{aligned} & r_{3,4}=3 \\ & w_{3,4}=0,7 \\ & c_{3,4}=1,1 \end{aligned}$ |
| $k=2$ |  |  |  | $\begin{aligned} & r_{1,3}=2 \\ & w_{1,3}=0,7 \\ & c_{1,3}=1,3 \\ & \hline \end{aligned}$ | $\begin{aligned} & r_{2,4}=3 \\ & w_{2,4}=0,9 \\ & c_{2,4}=1,6 \\ & \hline \end{aligned}$ |
| $k=3$ |  |  |  |  | $\begin{aligned} & \hline r_{1,4}=3 \\ & w_{1,4}=2 \\ & c_{1,4}=1 \\ & \hline \end{aligned}$ |


|  | $i=0$ | $i=1$ | $i=2$ | $i=3$ | $i=4$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $k=0$ |  | $\left.r_{1,1}, 1\right)$ <br> $w_{1,1}=0,2$ <br> $c_{1,2}=0,2$ |  |  |  |
| $k=1$ |  |  | $r_{1,2}(2)$ <br> $w_{1,2}=0,4$ <br> $r_{1,2}=0,6$ |  | $r_{44}(4)$ <br> $w_{44}=0,4$ <br> $c_{4,4}=0,4$ |
| $k=2$ |  |  |  |  |  |
| $k=3$ |  |  |  |  | $r_{1,4}(3)$ <br> $w_{1,4}=2$ <br> $c_{1,4}=1$ |



