Sebastian Iwanowski FH Wedel

8. Effiziente Faktorisierung von Polynomen 8.2 Faktorisierung in $\mathbb{Q}[x]$ über den Umweg $\mathbb{Z}_p[x]$

Referenzen zum Nacharbeiten und Vertiefen:

Köpf 8.4-8.5

Kaplan 6.4 (setzt Kap. 3 voraus, das in dieser Vorlesung nicht behandelt wurde)

Polynomfaktorisierung in Q mit der Zassenhaus-Schranke

Nach Satz 1 (CA62-4) können wir uns auf die Faktorisierung in Z beschränken.

Def.: Symmetrische Modulofunktion

Die Elemente von \mathbb{Z}_p sollen in diesem Kapitel mit $\left\{-\frac{p-1}{2}, -\frac{p-3}{2}, \dots, 0, \dots, \frac{p-3}{2}, \frac{p-1}{2}\right\}$ bezeichnet werden.

Satz: Identische Faktorisierung in \mathbb{Z}_p und \mathbb{Z} für beschränkte Koeffizienten

Sei $a(x) \in \mathbb{Z}[x]$ ein normiertes Polynom $(a_n=1)$ mit $a(x) \equiv b(x) \cdot c(x)$ (mod p) und b(x), $c(x) \in \mathbb{Z}_p[x]$ und $|d_i| < p/2$ für alle Koeffizienten d_i eines beliebigen Faktorpolynoms $d(x) \in \mathbb{Z}[x]$.

Falls $a(x) = b'(x) \cdot c'(x)$ und $b'(x) \equiv b(x)$ mod p und $c'(x) \equiv c(x)$ mod $p \Rightarrow b'(x) = b(x)$ und c'(x) = c(x)

Satz: Zassenhaus-Schranke

Sei $a(x) \in \mathbb{Z}[x]$ ein normiertes Polynom $(a_n=1)$

- 1. $R_0 = \frac{1}{\sqrt[n]{2}-1} \cdot \max_{k=1,\dots,n} \sqrt[k]{\frac{|a_{n-k}|}{\binom{n}{k}}}$ ist eine obere Schranke für den Betrag aller Nullstellen.
- 2. Für alle Koeffizienten b_i eines jeden normierten Faktors b(x) von a(x) gilt: $|b_i| \le \max_{k=1,\dots,m} {m \choose k} R_0^k$ (m sei der Grad von b)

Polynomfaktorisierung in Q mit der Zassenhaus-Schranke

Algorithmus:

- 1. Berechne zu $a(x) \in \mathbb{Z}[x]$ die Zassenhaus-Schranke z für die Koeffizienten der potentiellen Faktoren.
- 2. Wähle eine Primzahl p > $2 \cdot z$.
- 3. Faktorisiere a(x) in \mathbb{Z}_p mit dem Berlekamp-Algorithmus.

Laufzeit: O(n³z²) wobei z die Zassenhaus-Schranke ist

Polynomfaktorisierung in Q mit dem Hensel-Lifting

Satz: Hensel-Lifting von \mathbb{Z}_p auf \mathbb{Z}_{p^2}

Sei $a(x) \in \mathbb{Z}[x]$ ein normiertes Polynom $(a_n=1)$ mit $a(x) \equiv b(x) \cdot c(x)$ (mod p) wobei b(x), c(x) normiert und $ggT(b(x),c(x)) \equiv 1$ (mod p)

Dann gibt es b'(x), c'(x) $\in \mathbb{Z}[x]$ mit b(x), c(x) normiert und ggT(b'(x),c'(x)) $\equiv 1 \pmod{p^2}$ und b'(x) \equiv b(x) (mod p) und c'(x) \equiv c(x) (mod p) und a(x) \equiv b'(x) \cdot c'(x) (mod p²).

b'(x) und c'(x) sind eindeutig (mod p²) und können mit dem Erweiterten Euklidischen Algorithmus bestimmt werden.

Algorithmus:

- 1. Suche zu $a(x) \in \mathbb{Z}[x]$ und kleinen Primzahlen p die Berlekamp-Faktorisierung, bis die Bedingungen des Hensel-Liftings erfüllt sind.
- 2. Berechne iterativ b'(x) und c'(x), bis p^2 das Doppelte der Zassenhaus-Schranke erreicht hat.

Anm.: Durch Probemultiplikation in $\mathbb{Z}[x]$ kann festgestellt werden, ob die Faktorisierung schon eher gefunden wurde.