Sebastian Iwanowski FH Wedel

9. Vorlesungswoche

Berechnung maximaler Flüsse in q/s-Netzwerken Beweis der Laufzeit des Algorithmus von Edmonds-Karp:

Def.: $\delta_f(u,v)$ sei die Anzahl der Kanten zwischen u und v im Restegraphen G_f

Breitensucheigenschaften für Quelle s und Senke t:

Lemma 1: Jeder Erweiterungsweg P_f in einem Graphen G_f hat die minimale Anzahl von Kanten.

Lemma 2: Für jeden Erweiterungsweg P_f in einem Graphen G_f , der die Kante (u,v) benutzt gilt: $\delta_f(s,v) = \delta_f(s,u) + 1$

Detailbeweise für die Beweisskizze vom letzten Mal:

Lemma 4.5.8: Seien f, f´zwei hintereinander von Edmonds-Karp erzeugte Flüsse:

Dann gilt für alle $v \neq s,t$: $\delta_f(s,v) \leq \delta_f(s,v) + 1$

Lemma 4.5.9: Eine Kante wird höchstens n/2 mal kritisch.

Referenzen zum Nacharbeiten und Vertiefen:

Alt, Kap. 4.5.4 (nach diesem richtete sich der Vorlesungsbeweis) Cormen, Kap. 26.2 (entspricht ebenfalls dem Vorlesungsbeweis) Turau, Kap. 6.3 (anderer Beweisaufbau und Notation)

Berechnung maximaler Flüsse in q/s-Netzwerken Algorithmus von Dinic

Def.: Levelgraph L_f : (Turau: Niveaugraph G_f)

Entferne aus G_f alle Kanten (u,v) mit $\delta_f(s,v) \leq \delta_{f'}(s,u)$

Def.: blockierender Fluss:

Jeder Weg von s nach t hat eine kritische Kante

Satz: f maximal ⇒ f blockierend

Def. (Flusserweiterung):

Sei r ein Fluss in L_f . Für jede Kante e setze f'(e) = f(e) + r(e) - r(e)

Satz: |f'| = |f| + |r|

Referenzen zum Nacharbeiten und Vertiefen:

Turau, Kap. 6.4 (siehe auch Ausarbeitung und Vortrag Seminararbeit C. Padberg)

Alt, Kap. 4.7

Cormen, Kap. 26.4 (Push-Relabel-Algorithmen)

Berechnung maximaler Flüsse in q/s-Netzwerken

Algorithmus von Dinic

1) Initialisiere f mit 0. Unterschied zu Edmonds-Karp:

Repeat Jeder Pfad im Fluss wird maximiert, nicht nur ein einzelner

2a) Berechne L_f

2b) Suche blockierenden Fluss in L_f

3) Erhöhe f um den blockierenden Fluss

until kein blockierender Fluss mehr vorhanden (t ist in L_f nicht mehr erreichbar von s)

Laufzeit: $O(n^2m)$ Verbesserung in Turau: $O(n^3)$

Beweisskizze für Laufzeit:

In jedem Durchlauf erhöht sich $\delta_f(s,t)$ um mindestens 1 \Rightarrow es gibt O(n) Schleifendurchläufe 2a) und b) kann kombiniert in einer wiederholten Tiefensuche vorgenommen werden: O(nm) Verbesserung in Turau: O(n²)

Referenzen zum Nacharbeiten und Vertiefen:

Turau, Kap. 6.4 (siehe auch Ausarbeitung und Vortrag Seminararbeit C. Padberg) Alt, Kap. 4.7 (Details für Laufzeitbeweis in Vorlesung nicht behandelt)

Cormen, Kap. 26.4 (Push-Relabel-Algorithmen: mit Korrektheitsbeweis, in Vorlesung nicht behandelt)

Matchings in Graphen

Def.: Ein Matching ist eine Menge von Kanten, die keine Ecken gemeinsam haben.

Def.: maximales Matching:

i) möglichst viele Kanten (nur das wird in den Referenzen unten untersucht)

ii) Für bewertete Kanten: größtmögliche Bewertungssume

Def.: Mengentheoretische Formulierung des Graphen-Matchings (**2DM**):

Gegeben ein Menge $E \subseteq VxV$: Finde eine maximale Teilmenge $T \subseteq E$ mit:

Alle Komponenten der Elemente von T sind paarweise verschieden

Def.: Verallgemeinerung des Graphen-Matchings (**kDM**):

Gegeben ein Menge $E \subseteq Vx...xV$: Finde eine maximale Teilmenge $T \subseteq E$ mit:

Alle Komponenten der Elemente von T sind paarweise verschieden

Satz: kDM ist NP-vollständig für $k \ge 3$ und 2DM ist in P

Referenzen, die allgemeines Matching zumindest ansprechen:

Cormen, Kap. 35.1 (Ende), Problemstellungen 35-4,35-5 Alt, Definition 4.6.1

Flüsse in ganzzahligen Netzwerken

Satz: Gegeben ein Netzwerk mit ausschließlich ganzzahligen Kapazitäten.

Dann ist der Wert des maximalen Flusses ebenfalls ganzzahlig.

Hausaufgabe: Beweisen Sie den Satz ohne vollständige Induktion, sondern vielmehr

mit Hilfe eines Satzes aus der 8. Vorlesungswoche direkt.

Korollar: In einem 0-1-Netzwerk (alle Kapazitäten sind 0 oder 1) besteht der

maximale Fluss aus der maximalen Anzahl von kantendisjunkten

Wegen zwischen s und t.

Referenzen zur Vertiefung und Irreführung:

Cormen, Satz 26.11 (Ganzzahligkeitstheorem): Der Beweistipp verführt zu Umständlichkeit! Turau, Kap. 6.5